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A MODEL FOR DISCRIMINATING AMONGST
STUDENT TEACHERS OF MATHEMATICS.

Pat Perks, The University of Birmingham, UK.

-During my research into the effects on mathematics students teachers of a lesson
planning structure, I developed a two-dimensional model to describe students’
potential as good teachers. The image presented the continua for analysis and
performance as axes and describes the qualities of students within five regions.

Introduction.

In my current research on the effects of a particular planning model (Perks &
Prestage, 1994) used with mathematics students on a one year post-graduate course in
teacher education, I looked for ways to structure the judgements made about
students’ potential to become good teachers. Existing models tend to be uni-
dimensional and focus on performance. I believe that performance itself is
insufficient. Investigating the evidence on the use of the planning model amongst
thirty-eight students over one year, the need emerged to differentiate the levels of
analysis in pre-service teachers.

Methodology.

The research data included students’ lesson plans and evaluations, observation of
lessons, tapes of debrief sessions, videotapes of lessons and interviews of a sample
students at the end of the course. The analysis is based within the interpretive
research paradigm (Bassey, 1995), and integral to it is my role as a participant
observer (Eisenhart, 1988), my reflection on my professional role as a tutor (Schon,
1987) and the discipline of noticing (Mason, 1994).

The Performance Continuum.

Performance is what 'natural’ teachers, be they liberal or authoritarian will be deemed
to show during their first class lessons. It includes the most commonly described
features of student teachers, and is often the only aspect of one-dimensional student
growth pictures. Performance is used here in the sense of technical skills, which can
be whole substance of competencies (e.g. DfE 1992). Students may start anywhere
on the continuum, but the aim is that they should become better performers.

Performance is often related to confidence about standing up in front of a class and
getting all pupils to work. Some students are extremely confident from the
beginning, some only need a few experiences, but for others their performance will
improve or regress in response to different classes and situations.

The continuum is divided into three sections (fig 1), negative, neutral, positive. The

|_negative , neutral , positive ~1
T T

: rel
Inappropriate God Performance

Figure 1: The Performance Continuum.
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negative zone describes performance which is not successful in the classroom. It is
the performance of those who may avoid eye contact, continue to speak when pupils
are not listening, the type of student teacher who appears unaware of the 'audience’
i.e. the pupils. The student will complete tasks related to teaching, but often only in
response to someone asking for them to be done. These are the students who may be
late, who miss deadlines, whose time management is poor. They seem unaware of
strategies necessary for classroom management and teacher/pupil interaction.
Students in this group fall into two categories, those who are unaware of the need to
demonstrate such attributes and those who are so nervous that they cannot
demonstrate them.

The neutral zone describes the starting point in performance of most students, they
are aware of the strategies for teaching, the professional demands of the role and are
trying to improve. Different individuals will have different aspects to develop.

The third zone describes those who quickly develop a wide range of skills, they speak
well, demand the attention of their classes, they deal with the everyday jobs of
teaching and volunteer to take on extra responsibility. The routines of teaching are
learned quickly. They are efficient and resources, time etc., are all well managed.

Competencies, such as those in Circular 9/92 (DfE, 1992), tend to highlight the
performance continuum. Even attributes related to planning good lessons or
motivating pupils, which should be more than technical skills, can often be judged on
appearance.

I want my students' to be confident about their performance, I do want them to be
good actors in the role of teacher, but I also want them to be more than technicians,
something else is required. Emerging from my data is a further division, which is
related to the relativist/absolutist dichotomy (Burton, 1994, p 209), i.e. those who
enjoy discussing mathematics and its teaching, and those who feel that the teaching
of mathematics is well defined and unproblematic. There is a need for another way
of differentiating between the students, beyond performance.

The Analysis Continuum.

Students on the course have to consider many aspects of analysis, analysis of
mathematics, analysis of lesson styles, analysis of teaching and of learning, reflection
on and evaluation of lessons, and analysis of their own development. Itis in the area
of analysis where it is possible to see behind the facade of performance.

| negative | neutral ) positive N
I T ¥ y 7 i
None Good Analysis

Figure 2: The Analysis Continuum,

The continuum is split into three main zones (fig 2), where the neutral zone is where I
would place the analytical skills of the majority of students. Many of the students
initial reactions to the analysis expected of them is affected by their views of
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pedagogy. The students' previous experience of schooling is an important factor.
They use the worked example and practice from text books, because that is what they
believe worked for them. Many believe that teaching is repetition of facts and that by
repeating the same thing the children will learn as a result. As a result, questioning
the authority of the text book and working on different ways of presenting
mathematics to children can seem irrelevant. In order to analyse the mathematics,
they have to accept that some children fail to learn and that this is not necessarily the
children's fault. It is my contention that it is only by working on the analysis of
mathematics and the teaching of mathematics that the students can challenge the
conservatism of their own experience and begin to work on the mathematical
experiences which will suit their pupils. It is a view compatible with the idea of good
teachers as learners (Sotto, 1994).

Those who are poor at analysis are uninterested in lesson planning, other than as
something they have to do for others, it is not seen to contribute to their development
as teachers. Students in the neutral zone follow the expected routines for lesson
planning, but they do not really know why they are doing it, they do not have their
own questions, although they will willingly try to engage with those of others. They
only see the importance of analysis in terms of other people's expectations, it is
required, so they do their best.

It is only in the positive area that analysis is valued for its own sake, as an important
feature of teaching and learning to teach. Students further along the continuum
become interested in analysing the mathematics, the lesson, their roles, the pupils’
roles. Those who are good at analysis are moving to be articulate about their
practice, they can reflect on their reflection-in-action (Schon, 1987), they can record
those incidents where noticing them helps to improve their teaching, they see
planning and evaluation as critical to their learning, they are beginning to see how
many ways one can question the mathematics.

It is the analysis as evidenced in lesson plans and evaluations, the dialogues of
debriefing sessions and the work in method sessions which is more important to me
in discriminating between students. I value those who analyse more than those who
perform. This may be because our students are successful products of a system of
mathematical teaching which they should not model, because it currently fails the
learning of many. I view my job as challenging my students’ views of the ways
others may come to know mathematics.

The Analysis/Performance Axes.

In considering the interrelation between performance and analysis, figure 3 shows the
two continua as orthogonal axes. The top right hand area represents those who are
my best students. The axes create four quadrants, with the neutral zones to the right
and above the origin, with the shaded area representing the majority of students.
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Figure 3: The Analysis/Performance Continua as Orthogonal Axes

The First Quadrant.
The Shaded Region:

\

When placing students on figure 3, the majority begin in the shaded region. They
know where they are going, they know what they want to do, and their confidence to
perform improves over time. They think about the subject and try to analyse, but
whether these aspects will continue to develop will depend much on their first
appointments or their own attitude towards professional development. They tend to
be “self-referencing” (Ellwein et al., 1990, p 9), all their success is ascribed to their
planning and practice, but then so is the failure of lessons. They are as yet unable to
view their role, except in a few instances, in terms of the pupils' learning. They most
often believe that teaching is skill-based (Applegate, 1989, p 84), they are concerned
about their performance in terms of lists of competencies, and these can become to
be seen as more important than the thinking about the why of teaching rather than
being complementary to it.

The Upper Right Sector:

In upper right sector of the first quadrant lie those students I would label as "good", I
give them the best references and I would employ them. They are still not yet good
teachers, but the quality of their analysis is far superior to anything which was
expected of me at the end of my training. Their performance is good, they are
confident yet have-a "self-forgetful ease” (van Manen, 1995, p 46). Their classroom
management is nearly always appropriate, they are helpful to the department in which .
they work and the questions they ask show a depth of interest which is challenging
and satisfying. They are deeply interested in their pupils' work and reactions, they
have "pedagogical tact" (ibid., p 43). They believe that teaching is knowledge-based
(Applegate, 1989, p 86) as well as being developmental (ibid., p 82) in that they
expect to go on learning throughout their careers. They have an "open concept of
self” (Quicke, 1996, p 15), they can identify opportunities for change, aspects of
others’ learning and teaching which they can use to help their teaching. Their
analysis is not self-conscious, they accept the need to develop routines but recognise

\ 12 .
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the need to question automatic reactions, (van Manen, 1995, p 40). They can be
described as "The Teacher on the Grow" who is "strongly committed to being a
learner” (Lambdin & Preston, 1995, p 135). They enjoy discussing mathematics and
want to challenge traditional approaches to its teaching. They seek alternative lesson
styles and see the need for variety in their teaching approaches.

There are variations of quality within this sector but most of these students should be
the heads of department of the future. They are likely to become teachers who are
"The Standards Bearer" where "student inquiry is the predominant mode of learning”
(Lambdin & Preston, 1995,p 136) the type of teacher who "builds classroom

" discourse around students' ideas, whether right or wrong” (ibid.). There are not
many students who lie in this part of the quadrant, and the majority, in my
experience, have been women.

The Second Quadrant.

The second quadrant is more problematic. This usually describes a small group of
students, of whom the majority are women. From their analysis these students have

" the potential to become good teachers, but their performance gives cause for some
concern. They may improve once they are not meeting the demands of several
teachers. They know what mathematics they would like to teach and how, but trying
to adapt to the norms of the class with which they are working can act against their
developing more confidence. They wish to please and find it difficult to put their
own viewpoint to the class teacher. Sometimes they feel that they are loosing
control, when they are, in fact, over-controlling the class. They can be afraid to offer
a little freedom in case chaos ensues, but the tight rein can provoke rebellion.
However, there is often not a control problem with all classes. The potential of the
student can often be seen with a 'difficult’ class, it is almost as if knowing that others
have failed with the class allows the student to experiment with his or her own
methods. These students listen to advice and act upon it, but this can lead to them
feeling pulled in different directions. In this quadrant are those students who in
describing lessons tend to talk about success in terms of their pupils, Ellwein et al.
(1990,p 8) would call them "self-effacing", in that the 'T' of their recall was low in
comparison to the ‘they’ of their pupils. The contribution of the pupils is highly
valued, their learning is noticed and their participation analysed for how it can be
even further improved. Any failure is seen to be the responsibility of the student, in
that the material offered was too difficult or too varied or ... They see teaching as
developmental (Applegate, 1989, p 82) they expect their expertise to pass through a
series of stages, during their teaching career. For me these students are also Lambdin
and Preston's "teachers on the grow” for they are "open to change and anxious to
learn" (ibid., 1995, p 136). These students have difficulty in.getting through
interviews for jobs, because they are more nervous with peers and superiors than they
are with pupils. They also get limited references from their schools because of the
slow development of technical performance.




- The Third Quadraht.

The third quadrant contains a number of students at the beginning of their first
teaching practice. They may need a lot of nurturing if they are to succeed. However,
if by the later stages of teaching practices they are not in the top right hand corner,
they should be those who fail or are counselled to withdraw from the course.

For those who fail there are groups of factors, personal, professional, contextual,
identified by Sudzina & Knowles (1993,) some relating to a "sense of development of
self-as-teacher” (p 255), which describe how they want or do not want to act in
classroom, personality traits, levels of participation, unwillingness to ask for help, or
lack of time and resource management. In lesson planning theirs is an "inability to
select and relate goals to objectives” (ibid., p 256). They generally lack the technical
skills of teaching, and they have problems with evaluation and assessment
procedures. They may not accept the nature of their role in school, they have little
understanding of the school as institution.

The majority of students who fail or withdraw from our course are male, and there »
may be issues to explore related to perceptions of teaching and gender which need to
be considered. '

The Fourth Quadrant.

The fourth quadrant contains, for me, the most frustrating students, they have the
performance of teachers and on first glance would be labelled as good, but they are
not interested in analysis. They perceive themselves as 'experts’, they have been in
school and seen mathematics taught, so 'know’ how to pass on that expertise. They
believe that teaching is acquired naturally (Applegate, 1989, p 80) and are confident
that they are ready to teach. They see the methods course as irrelevant, it is only the
practice in schools which interests them. They could be considered "The Frustrated
Methodologist” (Lambdin & Preston, 1995, p 133), they know how to follow
traditional methods and do not see why they should have to engage in discussion of
alternative practices. In their classes there is

tight control over discussions, discouragement or ignoring of most statements
that may be incorrect or that could lead to confusion ... more concern with
procedural facility than with conceptual understanding. (Lambdin & Preston,
1995, pp 133, 134 )

These students can be described as "ego-enhancing” (Ellwein et al. 1990, p7),all
success in lessons is due to the student, all failure in lessons is due to the pupils. The
'T' is very strong in their reporting, in the sense that the 'I' is always right. Their
reflection is tightly restricted by being "grounded in a reified view of the self"
(Quicke, 1996, p 15), everything is related to their own personality, there is no
perception of any need for change. These students receive very limited references
from me; I would not want to employ them, as they appear to have little real interest
in their pupils. However, they are articulate and often get jobs in competition with
those I would consider good students. Many of them will be labelled as good




teachers, because they will deliver examination results. They teach by force of
personality rather than thinking about the pupils and their needs. This is, fortunately,
a group which rarely contains many students, and they have been mostly male.

There is an issue of recognising the limitations of such students. Teachers in their

practice schools often value these students highly, because their classes are well--
disciplined. Teachers often see classroom control as being the first pre-requisite of

the new teachers, they do not necessarily relate this to the content of the lesson.

Students who can control are often valued more highly than those with better lesson

ideas and emergent classroom control.

The Four Quadrants.

The division of the students within the four quadrants offers a way of categorising
students and it can be reconciled with other work, for example a classification from
Transactional Analysis, (cf. Harris, 1973), (figure 4).

Performance
I'm OK I'm OK
You're not OK| You're OK
L N,
| — T 7
Analysis
I'm not OK I'm not OK
You're not OK You're OK

Figure 4: The language of Transactional Analysis and the Analysis/Performance axes.

The four states describe the relationship of the student to their pupils, with those in
the shaded region moving between all of the four different states. The use of Parent,
Adult, Child in this approach to psychotherapy can be used to describe some
behavioural traits. In the first quadrant are those individuals who enjoy the creativity
of their Child, know the power pull of their Parent, but use their Adult to select the
appropriate transaction with pupils, in accepting them as reasoning, reasonable
beings. In the second quadrant, the Child is active, but the pull of the Parent may
make the students behave in ways in which they would, in retrospect not admire. In
the fourth quadrant, the Child is unappreciated, creativity and questioning seem
irrelevant, the Parent is right and the only transactions with pupils are Parent-Child.
In the third quadrant, the transactions with pupils are confused, they will sometimes
be Parent-Child, but will often be Child-Adult, or Child-Parent or even Child-Child,
the Adult seems unavailable in this scenario, as the students behaviour is
inappropriate.
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Conclusion.

The development of the analysis/performance continua as diagrams offers an on-
going appraisal of student development. I know where each student is on the
diagram, 1 know where 1 would like them to be and this allows me to offer
appropriate support. Clarifying the relationship between analysis and performance
has offered me a greater insight into my judgements, my criteria are more explicit,
my criticism of some students has a much stronger rationale.

I now see my role as helping students to move from the neutral zone, along the

-diagonal to the top right hand corner. By plotting an individual's movement on the

diagram over time, there is a clear picture to help students to understand how they are
developing. As partnership increases with our teaching practice schools and more is
expected of teachers in schools to help students to develop, the analysis/performance
continua offer a valuable adjunct to a list of competencies in discussing teaching.
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A STUDY OF TEACHERS’ CONCEPTIONS ABOUT MATHEMATICS
On Results from the Third International Mathematics and Science Study (TIMSS)

George N. Philippou & Constantinos Christou
Departmeént of Education, University of Cyprus

Abstract: This study focuses on teachers' conceptions about mathematics and its pedagogy
in relation to students’ achievement. Three groups of countries were formed according to
students performance in mathematics and responses of teachers on 20 items were analyzed;
those items referred to conceptions about the nature of mathematics, mathematics teaching,
and mathematics learning. Substantial differences were found in teachers’ conceptions
among groups of countries, indicating culture bias and a relation to student achievement.

Introduction and aims

Despite the volume of related research, the term “conceptions” is still loosely
defined, currying various meanings mainly within the affective domain.
Conceptions about mathematics have been defined as “conscious or subconscious
beliefs, concepts, meanings, rules, mental images, and preferences concerning
mathematics” (Thompson 1992. p. 132). In the German language, the same
construct is met as subjective theories, or as one's mathematical world views
(Pehkonnen, 1994), while in Italian the terms conception, image, opinion, view, and
belief are used interchangeably (Furinghetti, 1997).

Two major aspects of mathematical conceptions have been distinguished:
conceptions of mathematics as a discipline-what mathematics is really all about- and
conceptions of pedagogical knowledge of mathematics. Pedagogical knowledge
refers to teachers’ learning of theoretic principles and focuses on questions such as:
what is the meaning of mathematical knowing, what does it mean to teach and learn
mathematics, and how does one come to know mathematics? It also includes such
topics as didactical models, planning instruction, student motivation, classroom
management, classroom environments, etc. Teachers’ conceptions about the
teaching, and learning of mathematics are the two aspects of pedagogical
knowledge which are presently discussed.

Conceptions that teachers hold about mathematical knowledge, teaching and
learning have profound effect on the selection of classroom activities (Greeno,
1989). A teacher’s epistemology or philosophy of mathematics and its teaching (if
articulated as a coherent philosophical system) functions as a filter and regulator
determining one’s teaching style and decisions made before, during and after
instruction (Shierpinska, 1994). The relationship between conceptions of
pedagogical knowledge and teaching actions was extensively studied (Grossman,
1990) and significant differences were found between classroom actions adopted by
teachers with and without formal pedagogical knowledge. Those actions are
influenced by beliefs about the subject matter, which “contribute to the ways in
which teachers think about their subject matter and the choices they make in their
teaching” (Grossman, Wilson, & Shulman 1989, p.27).
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Knowing mathematics is currently considered as equivalent to understanding
and doing mathematics, where the latter is associated to problem solving.
Mathematical understanding has been defined in terms of mental representations,
which constitute part of wider networks of representations: “a mathematical idea,
procedure or fact is understood thoroughly if it is linked to existing networks with
stronger or more numerous connections” (Hiebert & Carpenter 1992, p. 67).
Understanding and teaching mathematics involves “metaphysical” parameters which
lead to epistemological obstacles: “beliefs about the nature of scientific knowledge,
our views, images that we hold and that are imprinted in the language that we use,
schemes of thinking-all form the starting point for our dealing with scientific
problems as much as they bias our approaches and solutions” (Shierpinska, 1994, p.
126). Positive interactions were found between teachers knowledge and affective
factors, since what teachers believe about understanding, knowing, and using
mathematics, inevitably affects their teaching style, and hence the outcome of a long
and laborious process. Though there is a widely felt need to relate and integrate
cognitive and affective elements into empirical research (McLeod, 1992), there has
been hardly any progress towards the combination of those variables.

Past international studies have demonstrated that Japan and other countries of
the Far East figured at the top of the list of participant countries (Robitaille &
Travers, 1992). Among the various interpretations for this phenomenon, cultural and
factual factors were mentioned, such as the length of the working week and/or the
academic year. Presently, we investigate teachers’ conceptions about mathematics
and its pedagogy in an international context, and at the same time, we compare the
conceptions of teachers from different groups of countries, in terms of culture and
student achievement. Specifically, the following questions were formulated:

1. What are the conceptions of teachers about the nature of mathematics, the
learning and teaching of mathematics, and how do these conceptions vary by
culture?

2. Are there significant differences between teachers’ conceptions about
mathematics according to students’ achievement?

Methodolf)gy

By design IEA studies (International Association for the Study of Educational
Achievement) provide a wealth of standardized data, which are available for further
consideration and analyses, facilitating international comparisons. ‘The teacher
questionnaire of the TIMMS included items which examined teachers’ conceptions
about a wide spectrum of mathematics instruction, while students’ achievement was
assessed by other tests. To investigate the research questions, we monitored 20 items
from the questionnaire completed by 7-Grade teachers (see Appendix). These
Likert-type items, were classified into three categories i.e., conceptions: a) about the
nature of mathematics (five items), b) about the process of teaching mathematics
(nine items), and c) about the process of learning mathematics (ten items). (Note
that four items were classified in two categories). The items in the first category
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involved three points and those in the other two involved four points. Teachers were
expected to react on the idea expressed by the statement by selecting the relevant
alternative. By. splitting items according to a general interpretation of mathematics
and its pedagogy as either “a set of rules and procedures” or as “a connected and
coherent body of knowledge” (see headings in the Appendix), two more categories
were formed, which were also analyzed and studied.

The subjects were 7-Grade teachers from three groups of countries (out of 48
participants in the TIMMS), consisting of four countries each, according to students’
achievement in mathematics. The “Top Group” (TG) consisted of four Eastern
Asian countries (Singapore, N=137; Hong Kong, N=86; Korea, N=149; and Japan,
N=151), whose students appeared at the top of participant countries. The “Middle
Group” (MG) consisted of four European countries (England, N=201; Germany,
N=178; Belgium, N=123; and Sweden, N=187), whose students’ performance was
about the median of the success list, and the “Bottom Group” (BG) of four low
achievement countries from three different continents (Greece, N=162; Cyprus,
N=115; Colombia, N=146; and Iran, N=192). The responses of teachers in each
group of countries (drawn from the report made available by our national
representative) were combined together (weighed average) to form one entity i.e.,
the agreement/disagreement proportion for each group of countries.

The Median Polishing Analysis (Velleman and Hoaglin, 1981), was
employed. This method partitions two-way tables into four interpretable parts: the
grand or overall effect (GE), the row effect (RE), the column effect (CE), and the
interaction of rows by columns. The GE indicates the typical response of the
subjects across the total set of items, that is the extent to which they endorse the
content of the items. The RE tests for differences between responses among rows- in
the present case among groups of countries. The CE reveals relative differences
among items, and the cells contain the Residuals (rows x columns interactions),
which indicate the extent to which RE and CE cannot explain the levels of
endorsement that represent unique patterns of responses by specific subsets of the
subjects to particular items.

- Results

The results are presented in three sections corresponding to each category of
teachers’ conceptions under study, on the basis of the Median Polishing Analysis.
According to this method the numerical values indicate significant differences when
they exceed 10 in absolute value. A fourth section presents the results of the analysis
of conceptions in the two broad categories i.e., the “algorithmic”, and the “coherent”
interpretation of mathematics.

Conceptions about the Nature of mathematics. Table 1 shows that the GE of
this category was 66%, meaning that teachers as a whole endorsed the ideas
portrayed by these items. However, due to variability within items, the overall effect

. should be interpreted in the light of CE, which showed striking differences among
items. Teachers felt negatively about the importance of the ideas in the first four
items- the first three describe mathematics as a fragmented body of knowledge, (CE:
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-20.8, -41.3, -19.8, and -20.8, respectively). On the other hand, teachers endorsed

strongly the content of item 5 which emphasizes the coherent view of mathematics
(CE: 20.8).

The RE represent differences between the groups of countries, denoted by TG,
MG, and BG. The main finding of this comparison concerns MG teachers, who were
found to reject the content of the items of this category (RE: -20). The residuals,
however, indicate that this rejection was mainly due to disagreement on items N1
and N3, while MG teachers endorsed N4 and N5, which refer to mathematics as a
coherent body of knowledge. On the other hand, TG teachers (RE: -4), endorsed
items N2 and N3, which underline the sufficiency of computational skills and
mathematics as an abstract subject, and rejected N4 which connects mathematics to
real world. The latter item was endorsed by the BG teachers who consistently
rejected the fragmented concept of mathematics (N1, N2, and N3).

Table 1
Median polishing Analysis of Conceptions about the nature of mathematics
Countries/Item N1 N2 N3 N4 NS5 Row Effects
TG 0.75 4.2 5.8 -31.8 -0.75 -4
MG -10.3 6.2 -3.2 21.2 10.3 -20
BG -0.75 -4.2 -5.8 31.8 0.75 2.5
Column Effects -20.8 -41.3 -19.8 -20.3 20.8 Grand Effect=66

Conceptions about the Learning of mathematics. The first four items in Table 2
indicate an inclination for algorithmic skills and knowledge reproduction, while the
next five items draw attention to active strategies, relational and structural
understanding of mathematics. The overall effect of 46 shows that in general the
subjects endorsed the importance of these ideas.

Table 2

Median Polishing Analysis: Conceptions about the learning of Mathematics
Count./Item| LI L2 L3 L4 L5 L6 L7 L8 L9 Row effect

TG 23 08 -103 -22 98 -158 -12 -92 98 -2.5
MG 78 08 312 -78 12 238 32 12 138 -24
BG 22 08 102 22 98 158 12 92 138 -2

Col. Eff | 08 372 08 08 -133 102 398 288 -29.2| Gr. effect=46

The CE showed that teachers strongly endorsed the idea that students need to think
sequentially and procedurally, understand concepts, think creatively, and understand

real world use (L2, L7, L8, and L6: CE = 37.2, 39.8, 28.8 and 10.2, respectively),

while they do not consider writing of equations and reasoning as crucial in learning

mathematics (L5, and L9: CE =-13.3 and -29.2, respectively).
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The RE showed that as a total TG and BG teachers reacted in a rather

_ identical manner to these items (both small but negative RE), while MG teachers

were found to be particularly negative (RE: -24). The residuals indicate that the

overall position of the MG teachers cannot explain their reactions to items LI, L3,

L6, and L9, i.e, they are not negative about recall of formulas, practicing,
applications and reasoning (residuals: 7.8, 31.2, 23.8, and 13.8 respectively).

Conceptions about mathematics teaching. The items of this scale refer to
. instruction related to: practicing as a means to overcome difficulties, computational
skills, writing of equations, use of textbooks, understanding, reasoning, group work,
problem solving, and use of multiple representations. The GE of 31 (Table 3)
showed high level of general endorsement of the ideas expressed by these items.
High negative CE were observed on items T2, and T9, concerning the sufficiency of
computational skills and the solution of non-routine problems (CE:-34.8 and -29.3
‘respectively). On the other hand, particularly positive views were expressed on
items T1, T6, and T7, concerning the emphasis on recall of formulas, on reasoning,
and the of liking and understanding of students (CE: 29.2, 19.8 and 40.8).

Table 3
Median Polishing Analysis of Conceptions about the teaching of mathematics

Count/Item | Tl T2 T3 T4 T5 T6 T7 T8 T9 TIO R. Ef

TG. -103 78 168 -32-128 -08 -28 38 103 8.2. -10
MG. -113 298 -62 238 -22 92 32 148 112 1.2 -14.5
BG. 102, -78 -168 32 -128 08 28 -3.8 -103 -82 27.5

Col. Ef. 292 -348 -108 32 62 198 408 79 -293 -17.3| Gr. Ef=3]

The row effects indicate a rather similar negative overall reaction to these statements
by the TG and MG teachers, while BG teachers were found positive (RE: -10, -14.5
and 27.5, respectively). It seems that the positive GE was due to BG teachers rather
than to the total teacher population of the study. The similarity between TG and MG
teachers becomes also evident from the residuals, where they primarily differ on T4
(-3.2 compared to 23.8).

Algorithmic vs. Coherent interpretation of mathematics. The GE of the
algorithmic and the coherent nature of mathematics showed that teachers endorsed
both those conflicting interpretations, with an increased acceptance of the second
one (GE: 42 vs. 51). TG teachers were positive on the algorithmic items and
negative on the coherent (RE: 5.5, and -10), MG teachers rejected the algorithmic
and endorsed the coherent interpretation (RE: -19, and 8), whereas BG teachers were
slightly positive towards the algorithmic and most positive towards the coherent
interpretation of mathematics (RE: 2.5, and 35). The CE showed that the overall
reaction to the algorithmic interpretation was due to strong endorsement of items T1
and L2 (CE: 53.5, and 43), which emphasize drill and practice, and sequential and
procedural thinking. The coherent interpretation was adopted mainly due to
endorsement of N5, L7, T7, and T10, despite the rejection of items N4, T6, and T9.
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This means that the subjects appreciated mathematics as a practical guide to
represent real world, concept understanding, positive attitudes toward students, and
multiple representations, while they did not value the formal feature of mathematics,

“they did not ask students to justify their solutions, and they did not assign students

non-routine problems.
Discussion

The aim of this study was to search for understanding of implicit theories on
teachers’ conceptions about mathematics and its pedagogy, within a framework of .
cross-cultural comparison. According to Robitaille (1993), ranking of countries on
any measure is less important than the interpretation of differences in terms of
cultural and curricular variation; hence, the main emphasis was to interpret
differences among groups of countries in teachers’ conceptions as related to culture
and students’ achievement.

The analysis of responses produced evidence of significant differences among
the three groups of countries concerning teachers’ conceptions about mathematics
and its pedagogy. The results seem to confirm the claim that teachers’ conceptions
are directly related to their teaching style. Much of the contrast in teachers’
instructional emphases could be explained by differences in conceptions. In
particular the observed consistency between professed conceptions and classroom
activities, which was evident in all countries, suggests that there is a relationship
between the two constructs. For instance, MG and BG teachers were found to view
mathematics as a coherent subject consisting of connected topics. In line with their
conceptions, they seemed to adopt conceptual teaching approaches and emphasize
mathematical meaning and understanding. Conversely, TG teachers tended to regard
mathematics as a fragmented set of rules and algorithms, as an abstract subject,
which is in essence prescriptive and deterministic in nature. As a consequence, they
rather stressed algorithmic and computational skills. ’

The relationship between teachers’ conceptions and students’ achievement is
so complex as to defy any simplistic cause-effect interpretation, and one should be
cautious against drawing universal conclusions. Yet, the findings seem to support
the original assumption of this investigation that teachers’ conceptions constitute a
major factor affecting student’s mathematics learning. However, the basic question
of which conceptions are likely to produce better long run results, remains to be
seen. The didactic approach based on the fragmented conception of mathematics
was found to be associated with higher student’s performance. Despite reasonable
reservations that may be raised about the comparability of “non-similar”, about
differences in goals etc., the superiority of Eastern Asian countries in mathematics
achievement seems to be undeniable.

The teachers from Eastern Asia seemed to endorse views presenting
mathematics as a fragmented body of knowledge, in general, they tended to accept
the algorithmic interpretation of mathematics, they made extensive use of textbooks
and paid little attention to developing creative thinking. Those views were rather
steadily expressed in all three dimensions of the research questions and particularly
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on the final specific categorization of the items into two interpretations of
mathematics. MG teachers showed a clear tendency to endorse items along the
coherent nature of mathematics and they claimed to emphasize creativity and non-
routine problem solving. BG teachers were found somewhere in the middle of the
other two groups, and in the final analysis they endorsed both the algorithmic and
the coherent interpretation of mathematics.

Why do the teachers from each of the tree groups of countries hold the
specified conceptions is a question non addressed by this study. It is, however,
evident that there is a prominent cultural element influencing teachers’ conceptions,
teaching behavior, and student achievement. Traditional social values, ethics and
philosophies, individual motives and aspirations are quite different in Europe than in
the Easter Asian countries. So, teacher education and professional training, and
consequently practicing and learning, is by all means different. The cultural
variability within the group of low achievement countries-two European, one South
American and one Arab country-is probably the main reason of noticed differences
and some inconstancies.
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) APPENDIX
The statements used in the study -

Conceptions about the Nature of Mathematics

Mathematics as a set of rules and procedures
N1. Mathematics should be learned as sets of algorithms that cover all possibilities.
N2. Basic computational skills are sufficient for teaching primary school mathematics.
N3. Mathematics is primarily an abstract subject
Mathematics conceived as a connected and coherent body of knowledge
N4. Mathematics is primarily a formal way of representing the real world.
N5. Mathematics is primarily a practical and structured guide for addressing real situations.

Conceptions about the learning of mathematics

Mathematics conceived as a set of rules and procedures
L1. To be good in Mathematics how important is to remember formulas and procedures
L2. To be good in Mathematics how important is to think in a sequential and procedural manner.
L3. To be good in Mathematics how important is to practice on calculation and skills?
L4. Mathematics should be learned as sets of algorithms that cover all possibilities.
L5. How often do you ask students to write equations to represent relationships?

Mathematics conceived as a connected and coherent body of knowledge

L6. To be good in Mathematics how important is to understand real world use?
L7. To be good in Mathematics how important is to understand mathematical concepts?
L8. To be good in Mathematics how important is to think creatively?
L9. To be good in Mathematics how important is to be able to provide reasons to support
solutions?

Conceptions about the Teaching of Mathematics

Mathematics conceived as a set of rules and procedures
T1. If students have difficulty, they should be given more practice for themselves.
T2. Basic computational skills are sufficient for teaching primary school mathematics
T3. How often do you ask students to write equations to represent relationships?
T4. How often do you ask students to practice computational skills?

-T5. What percentage of your teaching time is based on the textbook? (76% - 100%)

Mathematics conceived as a connected and coherent body of knowledge
T6. How often do you ask students to explain the reasoning behind an idea?
T7. A liking for and understanding of students are essential for teaching mathematics and d
science.
T8. How often do the students work in small groups?
T9. How often do you ask students to work on problems with no obvious method of solution?
T10. More than one representation should be used in teaching a mathematical topic.
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EMILY AND THE SUPERCALCULATOR
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This paper reviews a short learning programme devised for a low achiever in
elementary arithmetic. Using a graphic calculator, the programme was designed
to change the quality of imagery associated with numerical symbolism. Earlier
observations had shown that the child’s symbolic images were episodic and
active, representing mental procedures that were analogues of physical ones. By
providing an alternative, non-counting dependent procedure, it was hypothesised
that the calculator would encourage the }‘o'rman'on of semantic and generic
d

images which used symbols as objects of thought. Positive indications suggest

that continuing to encourage most low achievers to count when they experience
difficulty in elementary arithmetic may need reappraisal.

Introduction

Symbolism has the power to dually and ambiguously represent computational
procedures and the results of these procedures (Gray & Tall, 1994). To benefit from
the flexibility provided by such ambiguity the young child’s conception of arithmetic
must progress through several phases of compression: lengthy counting procedures
which are interpretations of processes to do must eventually become concepts to know.
It is through procedural compression that symbols may become objects of thought.

This is a story of one eight year old whose efforts to progress through stages of
procedural compression had not provided her with the flexibility to use the power of
symbols. [t was hypothesised that if the ‘procedural clutter’ associated with the
perceptual and figural items that dominated her interpretation of mathematical symbols
could be removed, she too may focus on the power of symbols. To do this we provided
a graphic calculator, the ‘supercalculator’. The paper adds a further dimension to
notions that the use of calculators not only does not harm computational ability but
supports concept development (Shuard, Walsh, Goodwin and Worcester, 1991;
Shumway, 1990). Research on the use of graphic calculators (Ruthven, 1993; Dunham
& Dick, 1994) had indicated that there was potential for this resource within the
classroom although the outcomes did not always give positive results (Ruthven, 1995).
We consider the changes in the child’s use of symbolism during a period using the
calculator. Our focus. is the opportunity that the resource may give for stimulating the
construction of mental imagery associated directly with arithmetical symbols as
opposed to imagery that is an analogical transformation of them. '
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What can imagery tell us about success and failure in arithmetic?

Pitta and Gray (1997) describe how children at extreme levels of achievement in
elementary arithmetic focus on imagery which is of different qualities. Imagery
identified by ‘high achievers’ tended to be symbolic, used to support the production of
known facts and/or numeric transformations which produce derived facts. Imagery
reported by ‘low achievers’ was usually based on analogical representations of physical
objects. These images appear to be clear imitations of actions that could have taken
place with real objects. Pitta & Gray went on to suggest that the essential differences
between the imagery of ‘high achievers’ and that of ‘low achievers’ was that the
imagery of the former was semantic and generic whilst that of the latter was episodic
and active. The terms ‘episodic’ and ‘semantic’ were used to draw a distinction between
those images that.arise from memory associated with the recollection of personal
happenings and events, and those images linked to organised knowledge associated with
meaning and relationships but independent of an event. Such distinctions lead to the
conjecture that the images of ‘low achievers’ are essential to thought. In contrast, those
of ‘high achievers’ appear to act as thought generators. They ‘flash’ as memory
reminders, momentarily coming to the fore so that new actions or transformations may
take place. In the belief that the former is a factor of the procedural thinking associated
with the proceptual divide, the issue for this paper is whether an alternative ‘procedure’
may discourage a ‘low achiever’s’ need to use manipulatives in the mind but stimulate
the creation and construction of symbolic images that help.to generate thought.

An Alternative Procedure: Focusing on Symbols

There is a tendency within pedagogy to provide practice to confirm “understanding”.
For children who have difficulty with elementary arithmetic such practice is usually
based upon the use of counting. It is suggested that such experience may confirm the
understanding that arithmetical symbols can be transformed into physical objects, or
mental analogues of these objects. These then form the basis of counting procedures. It
would seem reasonable that if the learner puts effort into this solution to problems it is
perhaps the case that the more procedures are femembered and the more likely they are
to be used but, paradoxically, the learner may possess less understanding. However, it
has been recognised for some time that calculators can give children an insight into
numerical patterns (Shuard er al. 1991), To identify relationships between numbers
children need no longer be constrained by the use of lengthy counting procedures. The
supercalculator seems 'to have an added advantage. Combinations can be recorded and
displayed in their éntirety, equivalent outcomes from different procedures may also be
seen at the same time (Ruthven, 1993) and the child can control the form of display on
the screen. Additionally, for our attempt to minimise a focus on counting the
supercalculator offered two strengths; it provided an alternative procedure which had
the potential to provide an alternative representation for numbers, and it could display
all symbols and operations at the same time. It was conjectured that this would offer
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firstly an opportunity to concentrate on numerical symbols as objects of thought, and
secondly provide a stimulus which would support mental organisation. It had the
potential to support the creation and use of symbolic images. It did not support
analogical transformations of them.

A calculator provides and opportunity to create a number by pressing a button. It also
permits a particular number to be created using the combination of a composite series
of button pressing. Thus, by asking the child to create 9, this could be done by pressing
4+5=, by pressing 6+3= or it could be formed from 2+3+4 or 13-4 etc. By eliminating
a counting procedure the ‘alternative’ procedure had the potential to create a
“wholeness” about number. This may be seen at two levels; a specific one in which the
focus could be on number triples, and a more generic one during which it is possible to
identify the relationships between numbers and simple operations. It is unfortunately
the case that many “low achievers” find it hard to switch from harder to easier methods
if the first is habitual and unfamiliar (Krutetskii, 1976; Steinberg, 1985). The “button
pressing” procedure had the potenial to overcome this difficulty since the child may not
-regard it as a mathematical activity which should become a focus of attention.

Emily

We first met Emily in February 1995. She had considerable difficulty with elementary
arithmetic. Articulate and highly motivated, she was identified as one of the lowest
achievers within her year group of 119 children, Test results (SEAC, 1994) placed her
amongst the bottom four children. Our initial conversations with her were about the
numbers 1 to 10. Her responses were dominated by descriptions of images that were
analogues of physical objects. Over a series of four interviews, during which she was
given elementary addition and subtraction combinations and asked to talk about her
approach to each one she indicated that she relied extensively on active mental images.
As the items began to involve combinations greater than ten Emily made considerable
use of her fingers. She was representative of the group of low achievers who concretise
symbols and focus on mental or physical manipulation (Gray & Pitta, 1996).

Verbal and written symbols of the numbers one to six were seen as mental arrays of
dots in the mind. Those between seven and ten were mental images of fingers arranged
in a linear fashion. Emily manipulated her mental images of dots, her preferred image,
relatively easily. The solution to 4-3 was explained as:

As I see it there’s two dots above each other and then there’s.... the first one, the one below and the
one next to itare being taken away and there is only one left up at the top. (Emily, 1995)

It may well be that extensive experience with board games provided the episodic
background for this frame of images:

When I was young, when it was winter, we often played board gumes because we were not allowed
outside. We were using dice. We were playing all of the time using dice. (Emily, 1995)
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She recognised that there was greater difficulty associated with finger like images.
Using these meant doing two things at once, counting and concentrating on the sequence
in which each finger was used:

L am trying to think out the answer as well as use all of my fingers—this is confusing... with the dots it

is easier [than with fingers] because you don't have to keep thinking, ‘No it’s that one I need to move,
no, its that cne, or that one... [with the dots] it doesn't matter which you move. (Emily, 1995)

It was as if Emily recognised that if she used fingers she had to count particular
fingers, whereas by using mental images of the dots she could use any dots. For |
relatively more difficult combinations such as ‘nine take away six’ Emily used her
fingers in an indirect way by ‘feeling’ them without looking at them, touching them or
moving them. This was no surprise since evidence had shown that it is more likely that
an individual will move from a mental episode to a real episode as things become more
difficult (Pitta & Gray, 1997). But this too caused problems:

I find it easier not to do it with my fingers at times because sometimes I get into a big muddle with

them because I find it much harder to add up because I am not concentrating on the sum. I am

concentrating on getting my fingers right...which takes a while. I can take longer to work out the.
sum. than it does to work out the sum in my heacd. (Emily, 1995)

But there was a third problem for Emily. Her perception was that any procedure that
was not overt could place her in a position of conflict with the teacher:
If we don’t [use our fingers] the reacher is going to think, ‘why isn’t she using her fingers—it is meant

10 be the easiest way—and they are just sitting there thinking. It is like, ..because we are thinking
that...we are meant to be using our fingers because it is easier....which it is not.  (Emily, 1995)

Unlike most of the other children who formed part of the study into children’s use of
imagery (Pitta & Gray 1996, 1997) Emily appeared to recognise that there was a
qualitatively difference between using perceptual items and mental representations of
these items. It was not only that she believed the later was easier but to her it also made
a difference between ‘doing’ arithmetic and ‘thinking’ about arithmetic:

I try not to use my hands much... I don’t bother looking because I am too busy thinking so...
when I am not using my hands I am trying to work the sum out. (Emily, 1995)

Emily appeared to have come to some conclusions. First, it was easier to do the sum in
her head and secondly, some images were better than others. It seemed to her that it
was easier to see a number and remember .itif it was recognised by some form of
pattern like the array on adie. It was harder to think about if the representation was
based upon a line of finger like objects, each being focused upon at a separate point in
the counting procedure. Thirdly, arithmetic involved being seen to be ‘doing’, but this
was unsettling because she was trying to ‘think’. Unfortunately however, she was not
thinking with the tools her more able peers were using, the arithmetical symbols. Her
tools were analogical images of real objects manipulated in accordance with her
recollections of former experiences. Numerical symbols were concretised to form
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objects which supported the use of mental imagery that was episodic and active. Her
focus was on an action which could be simplified by the nature of the representation
that she gave to the objects. However, whether or not she used dots, fingers or finger
like objects the intrinsic quality of the object did not change. Her perception of quantity
represented by the symbols influenced her choice of objects and the way the objects
were used, so the focus turned to the nature of the action. Though it was evident that
her procedural competence was sound it had not supported the encapsulation of
numerical processes into concepts. She was not filtering out unnecessary information
and making the cognitive shift that would lead to the realisation that symbols could
become objects of thought. The longer term prognosis was that the qualitative
difference between Emily’s thinking and that of her more able peers would widen into
a gulf.

A Programme with the Supercalculator

Emily was introduced to the supercalculator after the first series of interviews.
Directed work with it extended over-a period of three months, April 1995 to July 1995.
The programme build around its use was not seen as simply another way of doing
things. The calculator was not a means for completing the result of arithmetical
combinations but a way of seeking different combinations that made a particular
number. Thus she started with the number and considered different routes to it. Four
phases were established to support the development:

1. Emily was given an opportunity to think about

Working with nine......
8 numbers without using the calculator

9 2. During this phase Emily used the calculator to
Making nine L o support her thinking not simply to check
2 3 answers. She could control the form of the
4. 5. numbers and seeing one combination
Working with the calcutator maintained in display could try the same

Ways to make nine

L. 2,
3. 4.
S. 6.

numbers in a different procedure. Memory
usually associated with holding quantities and
carrying out procedures could be directed
towards thinking about number combinations.
3. At the end of each activity she consider

Ways to make nine starting with S

;. : interesting things that had been discovered

. 6. during the activity.

Ways to make nine starting with 10 . 4. She was giVeﬂ and opportunity to talk about

L 2. individual numerals and associated

3. 4. combinations.

5, 6.

An interesting thiwg 1 have discosered To accompany her work a specially personalised
booklet was designed with each page following a
pattern similar to that in the adjacent figure.
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The programme called for Emily to try to complete a page of her booklet each week.
Each week she discussed her work with the programme designers. During this time she
was asked to talk about her numbers without access to the calculator or to her written
responses.

Programme Development

Initially Emily had to overcome some reluctance to use the calculator. This stemmed
largely from her perception of what others may think. However, by the end of the first
week she had established that there were many ways in which she could make nine, the
first number in the booklet. There were of course standard addition combinations such
as 4+ 5, 3+ 6 etc. but she also provided others, 4+ 4 +1, 3+4 + 2, and using
the starting points of 5 and.10 she now provided solutions such as, 5+1+142, 5+5 -
1,5+46-2, 10-1. Emily admitted that she wouldn’t have thought of these sorts
of combinations earlier but her outstanding discovery for the week was that she had
found out that she could add larger numbers and then take away.

[ didn’t know that you could add larger numbw\ and then take away. I didn't know you could
8o up and down. Emily, 1995

As she worked through the programme written evidence of Emily’s use of standard
triples during the non-calculator phase tended to decline. It became noticeable that for
the first four numerals in her sequence, 9, 7, 8, and 6 she gave at most two but then she
provided other ‘non standard’ combinations. When working with 7 for example she
provided 10+10+10-20-3, with eight she provided.99-91 and 34-32+6. Working with
the calculator she provided written evidence of combinations such as 90-80-4=6,
249+1-6=6, 30-15-9=6, 40-30-5=5, 10+30-30-2=8, 5+20-19=6.

Ruthven’s (1993) suggestion that different rules established thl'ough the use of the
super-calculator could provide a highly motivating context for discussion formed the
basis for the interviews that followed Emily’s written work. This discussion provided a
platform for the necessary stages of reflection. Her use of the calculator not only
removed the need to focus on counting procedures but aiso provided an opportunity to
see different descriptions of addition and subtraction procedures leading to the same
results. Furthiermore, from the interviews it became evident that Emily’s understanding
of the relationship between numbers was beginning to change.

Well,... before I would have found it harder with nine, but...um...its not that hard because I know
thart ten is really easy so nine is really easy because you just take away one fronm ren... (Emily)

In contrast to her earlier comments in which she had indicated that she found
subtraction difficult, Emily was now beginning to see a different framework for
working with numbers:

It was easier to take away from eight than | thought it would be. Before I found it a bit hard with the

other numbers. I thought eight would be a bit hard. But in the end it wasn’t as hard as I thought i
would be. {Emily)
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I have discovered it is much easier to use multiplication in sums (Emily, 1995)

[nevitably pattern became a feature of Emily’s discovery. When talking about 8 the
following exchange took place:

Int. What about 30-22.

Emily.  Well, 2012, add another ten 1o twenty, then if you take away, instead of twelve. .
it can’t be twelve, because that is much too low to take away from 30. So, I would
have rlmuth it would have been one of the twenty’s, so if it was twelve it would

be 2
Int. Let me give you one to do now. If you started at 40 how would you make eight?
Emily: It would be....take away....32.
Int: If you started at SO..
Emily  ...take away 42.
Int: ..and 607
Emily:  52.
int. Why has it all I}('L()In(' s0 easy all of a sudden.

Emily: Well, it wasn't very easy when I did the first one here, but then, if it was 40 it
would be 32, and then it would be 42 and then 52.....

By this time it was common for Emily’s written work to extensively include any
numbers up to 100 and at times she included numbers over 100 in her combinations.
She was beginning to realise that:

Itis alot easier to work with big numbers than I thought... I thought that big numbers would be very
hard because they are so big... but it isn't. It is just the same as low numbers. (Emily, 1995)

It was evident from our discussions that Emily was now talking about numbers as
objects. During all of the interviews that followed work with the calculator only on one
occasion did she volunteer information about her dots. However was left until a series
of follow-up interviews in January 1996 for us to begin to obtain some evidence that
her imagery may be changing. When asked to think about numbers that make seven
Emily’s first comment was:

1 just see the symbol 7 flashing in my mind waiting as if I was about to add it up...  (Emily, 1995)

During our investigations into children’s imagery no other low achiever had associated
the word ‘flashing’ with symbolism to describe imagery (Pitta & Gray, 1997), The
word had dominated descriptions of imagery by high achievers. Other numbers were
also associated with this notion of flashing and when directly asked to talk about what
she could see when she heard the word “Four” Emily responded by saying

4 flashes through my mind, and then I see, two wo’s like on a dice, 2 + 2, 100-96, four pounds...
Discussion

In contrast to interaction with concrete objects which requires the individual to
interpret what is going on, interaction with the supercalculator offers a system in which
the individual could build and test concepts first by observing and then by predicting
and testing what happens. The form of presentation could be directly controlled by the
child. What was becoming clear from our interactions with Emily was that she was
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building a different range of meanings associated with numbers and numerical
symbolism — she was beginning to build a new image, a symbolic one that could stand
on its own or be part of the options that would give flexibility. It seems as if her
imagery was beginning to be associated with the notion of ‘thought generator’.

Super calculators can carry out the evaluation of numerical expressions whilst the child
can concentrate on the meaning of the symbolism that remains evident throughout. The
evidence would seem to indicate that if practical activities dually focus on the process of
evaluation and the meaning of the symbolism they may offer a way into arithmetic that
helps those children who are experiencing difficulty develop a more powerful
understanding of symbols. However, belated emphasis on the ambiguous meaning of
symbolism, when the greater proportion of previous experience has emphasised
procedural and manipulative aspects, is embraced with difficulty. We may need to
reappraise our purpose in emphasising counting procedures with the “low achievers”. It
may be too late once the die is cast.
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KNOWING v KNOWLEDGE-IN -ACTION
Stephanie Prestage, University of Birmingham, UK

In researching teachers knowledge and beliefs about progression within the
mathematics National Curriculum for England and Wales, the tension between
teachers' knowledge of mathematics and their knowledge-in-action of the classroom
becomes apparent in their discussion on number and generalisation.

A lot of what I decide to teach is almost an inertia of what has always been
taught. We always taught about angle so angle is an important thing and so
we'll teach it again and it isn't very often that I'll actually sit down and ask
myself questions like that like why am [ teaching this.

head of secondary mathematics department

Introduction

Mathematics is a constantly growing and developing subject with a history that goes
back over hundreds of years. As a discipline it is well defined, as a form of
knowledge it has structures and agreed styles of justification and truth. As part of a
school curriculum it has unassailable pride of place. Becher (1989) in his study of
the disciplines claims that mathematics is a discipline of ‘inherent order, neatness and
regularity’ and by and large has subject matter that is ‘simple and orderly’. Such are
the myths that abound. The history of school mathematics, in contrast, is relatively
recent and the definition and imposition of a compulsory curriculum across the 5 - 16
years age range even more so. What understandings do teachers have of the school
curriculum? How do they select from the field of knowledge called mathematics?
How do they organise and present the knowledge to pupils? How are these decisions
legitimated?

Forms of knowledge

Stemming from Schon's 'knowledge-in-action’, (Schon, 1983), research into what
teachers know and do has been carried out by Shulman (1986), Wilson et al (1987),
Brown and Mclntyre (1993) and Cooper and Mclntyre (1996). This research defines
the attributes of teaching in order to discover better what it means to be an effective
teacher. Shulman uses the phrase ‘pedagogical content knowledge' to summarise his
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findings and refers to the kinds of knowledge that teachers need in order to transform
content knowledge to make it accessible to those they are teaching. Brown and
Mclntyre (1993) and, later, Cooper and Mclntyre (1996), use the phrase 'professional
craft knowledge' to summarise the different knowledge that teachers have. However,
there is an interesting tension in all this research about the need to know about
subject knowledge:

While one can infer from studies of teacher thinking that teachers have
knowledge of their students, of their curriculum, of the learning process that is
used to make decisions, it remains unclear what teachers know about their
subject matter ... Wilson et al , 1987, p.108

and results, which focus on the representation of that knowledge in classroom action.
From my reading it would appear that the researchers believe that 'knowing' about the
subject and their 'knowledge-in-action' are synonymous. Examples about subject
knowledge are couched in terms of pupil and/or teacher activity. Is it possible to
elicit from teachers what they know about their subject without them speaking about
what they do?

I find support for my own work in the ways in which data from teachers about their
knowledge was collected, mainly through interview and discussion, and in the
analyses which were carried out via interpretation by the researchers and the teachers
involved in the project. All conclusions carry a warning of uncertainty. In fact a
major theme running through all the research in this area is that of ‘complexity. To
elicit understanding about teachers' knowledge is to do so in full awareness of the
complexity of the job. To ignore a variable is not to understand of the whole picture.
To work with all the variables makes understanding the whole picture virtually
impossible. :

The project

The research presented here is part of a larger, nationally funded two year project,
(the whole of the project results are published in SCAA, 1993). I worked with a
group of eight teachers working on the given sequencing and defined progression in
the mathematics National Curriculum for England and Wales (DES, 1991). We met
monthly over the two years collecting data in a variety of ways to provide evidence
for our final report. At the end of the project I carried out a lengthy interviews
discussing several curriculum topics with six of them, 3 primary mathematics co-
ordinators and 3 secondary heads of mathematics departments. It is the findings from
the interviews that I present here, using the data from the discussion on 'number’ and
on 'generalisation’.

" Methods

The work with the teacher group provided an opportunity for them to be involved in
some action research. The cycle of deliberation, decision-making, action and -
deliberation on that action, was a major part of their work. My role was to analyse
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and synthesise the interpretations and findings of the teachers of the definitions of
progression within the different attainment targets. The role of participant observer
was therefore crucial to my research.

Participant observation is a kind of schizophrenic activity in which, on the one
hand, the researcher tries to learn to be a member of the group by becoming
part of it and, on the other tries to look on the scene as an outsider in order to
gain a perspective not ordinarily held by someone who is a participant only.

. FEisenhart, 1988, p 105

Over the two years I was involved in a 'progressive focusing' (Hammersley
&Atkinson, 1983) upon the data from the teachers in order to describe and account
for teachers’ understanding of the curriculum, to make their 'tacit knowledge explicit'.
House (1980) describes the evaluator as a hunter, a detective, an investigator armed
with a variety of techniques. Oja and Smulyan (1989) use the word 'messy’ to
describe the possible processes involved. The interviews were a 'final conversation'
about progression.

Support for analysis comes from social psychologists. Mead (1934) believed that we
form a concept of ourselves through the eyes of others, which he called the reflected
or 'looking-glass' self. It had three components "how we imagine others see us, how
we imagine others judge us, and our emotional reactions to those judgements" (
Levin, 1992, p. 128). This latter part is important. It is this interactive reflective
process through which the self is built. Possibly, therefore, as knowledge-in-action
will be 'reflected’ more often than knowing so a teacher's 'self’ will be built upon
beliefs about their knowledge-n-action.

The interviews

I decided, during the final phase of the project, that as the teachers were trying to
accommodate personally interpreted givens of the National Curriculum with their
own frameworks for teaching and learning mathematics, I would try and determine
what 'own frameworks' and 'personally interpreted' meant. If, what is important are
the beliefs that a teachers holds and brings to bear upon the curriculum, I sought to
discover what forms and informs such beliefs, what teachers are able to make choices
about and what role their knowledge of mathematics has to bear on such beliefs.

With permission from the group I sought to stand back and, by re-engaging in
conversation with each member of the group, to try to track and explain the roots of
their histories and how these exert an influence on the decisions of the teachers. 1
wanted to gain some further insight into their ideas and, I suppose to reassert the
individual back out of the group. I sought to build up a picture of influences on
teachers’ ideas about progression and gain further insight into their perceptions and
understandings about mathematics. I was interested in:

* individual responses;

* comparing responses;

* describing how ideas seem to form;
* influences upon choices.

O
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The particular questions that I want to explore concern choices in teaching. What are
the conditions that influence a teachers' decision making? To what extent are
individual perspectives static or dynamic. How does a teacher form ideas about what
to teach, when and how to teach? Do teachers have a sense of order of the
curriculum? What influences this order? What is it in mathematics that pupils come
to know and then come to know better?

Knowledge about number

All the teachers were eager to talk about number. They all had plenty to say but with
warning comments ranging from 'its hard’ to 'l teach it all the time'. I asked them
what they thought that number meant and what they wanted the pupils to know.’
Most of the replies were about knowledge-in-action as opposed to knowing the
mathematics. The primary teachers talked about how to teach or not teach the four
rules with the four operations happening at all stages through the primary phase; ' the
actual practical experiences suggest that they seem to be able to cope with all four...".
Recording and algorithms, they all suggested often happen too early. One of the
primary teachers (an ex secondary teacher) also talked about the 4 rules but in
relation to the scheme of work that he was using.

As to number sets which might be appropriate, one suggested that content emerged
from the classroom action and talked about using whatever came up including
fractions and decimals and negative number: .

We even talked a lot about minus sums and things because that's .quite
interesting.

Another thought that decimals were hard and anyway : ' When do we use decimals
in the real world ... it's always in measurement of some sort’. The same teacher did
comment that she was trying to move her teachers away from the seemingly logical
progression found in many schemes, i.e. first learn about numbers 1 to 10 , then
move onto 10 to 20, then 20 to 100 and so on.

.. The secondary teachers all talked about fractions, decimals and percentages, putting

the four rules of number first, all. offering a more linear -and hierarchical models of
thinking about number. . Is this a consequence.of teaching about mathematics across
the age and attainment range rather than teaching the whole curriculum to a class.
One teacher was adamant that, by the time they get to secondary school, they should
know the 4 rules, then onto fraction and decimals : ' I suppose you [my emphasis]

* would start with fractions rather than decimals’. (She often displaced the

responsibility through the interview in this way). Another felt that the 3 rules of
arithmetic should come first, excluding division, and then decimals next in the
meeting of different numbers, as: 'fractions are going out of fashion'. The third
teacher was very firm about what he thought number was about and in what order
things should be presented to pupils, shifting sets and numbers in a particular order
with the four operations

No-one talked about the consequences of technology, of calculators and spreadsheets.
Was this because they had no knowledge-in-action to reflect upon? Also, no-one
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talked about pupils getting to know and getting to know better, though maybe this is
implicit in their practice as one primary teacher said:

.. not all children need the same sequence, some children go through it a lot
quicker. some children might need to double back, some children could be
solving things out, some children detour and come back at a different point.

The sources of the teachers’ knowledge-in-action and the ordering of that knowledge
are given below.

Primary Teachers
"No Idon't think there is a hierarchy ... mostly I react to interest”.

" from the scheme and the scheme matches the National Curriculum. 1
assumed that the text books were right, what I have discovered is that it is not
really like that. I share my experience with colleagues and they will follow it
line by line whereas I'm kind of darting around because I am confident.".

Secondary teachers

"....from my experience of how pupils seem to be able to do ...the way
schemes have done it in the past ...".

.. from my head ... no from my experience of teaching pupils ... I think
experiences have dictated more of that hierarchy".

]

within my own mind I am so convinced that there is this order and would
argue with people ... there are some things that I believe are ordered"”.

Experiences, schemes and the National Curriculum figure as the main players in the
arena. For the secondary teachers an order exists that matches experiences and
schemes and these in turn match what then pupils can do. Implicit justification for
these orders lies in the mathematical development of the pupils that the teachers
observe happening. What is very strong in the explanations for the orders is the use
of the word ‘I’ though my conjecture for the ‘I’ is that the teacher tells me what
he/she believes to be so and, when these beliefs are reflected externally, finds
agreement with others, for example, texts and colleagues and the National
~ Curriculum.

Knowledgeabout generalisation

The National Curriculum for England and Wales has an attainment target including
process aspects of mathematics. The word 'generalisation’ occurs several times in
this attainment target. When I asked about generalisation, most were uncomfortable
with the word. Defensive reactions began most of the talk around this aspect of
mathematics. Most said that they did not know about it or they did not teach it or
that they did not really do enough ofit. .1 tried to explore the 'it' in each of these
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statements but I was not very successful. I was able to gather comments about the
given attainment target and spotting patterns and doing investigations. Progression
was offered in terms of getting better at spotting patterns. Algebraic generalisation,
as in external examination requirements, was offered as a progression from word
generalisations. One of the secondary teachers suggested that: 'Generalisation is
trying to find patterns in results that go beyond particular examples ... it's a hard
one'. One primary teacher however said that the whole of her work in mathematics
was about finding generalisations. Is there any agreement among teachers on what is
meant by the word? The graduate mathematician and head of department thought
that generalisation was hard, the infant teacher and ex-ballet dancer thought that it
was about what mathematics was all about.

Summaries for their knowledge-in-action show minimal understanding of this aspect
of mathematics.

Primary teachers

"My role would be in a sense listening and watching, watching what is going

on and beginning to raise specific ideas with them about what they are trying to

do".

"I have made an effort to change the experiences at school because I hated

maths at school, I feared it terribly,... my maths has developed from teaching
. [its about] investigating".

"I would look at the teachers book that I trusted and compare with my
experience the other strand is attainment target 1 and investigation work".

Secondary teachers

we were never taught generalisation ... the big influence is GCSE and the ‘
National Curriculum®.

:...based on coursework activities in year 10 and 11..".

. its part of it [the first attainment target]".

Generalisation then is not part of the teachers knowledge-in action, nor was it an
explicit part of their own mathematics education .They had few activities to describe
the word and therefore were neither able to discuss their knowledge-in-action nor
their knowing. A sense of order for learning in this aspect of mathematics becomes
more tentative and wary. Experience is still called upon but this time it is through the
National Curriculum levelling and through examination coursework. The word holds
an interesting tension of being something elusive, something ill-defined to being a
description, in words or algebraically, for the nth term of a number pattern. Maybe
this is the way that we control parts of the curriculum that we are not sure about, to
impose an simplistic interpretation that we can see happening in the classroom.
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In conclusion

What is noticeable throughout each interview is the brief references to the work of
the two years of the project. In response to questions about their own teaching
externals were used. High on the list of other referents that they do use are text
books, their own experience of learning mathematics, the National Curriculum and
departmental decisions. My conjecture that progression is problematic is barely
shared by the interviewees, despite our two years working together. Just as those
who teach, learn more than their pupils, so too the researcher learns more than the
researched. Defining progression other than accommodating the National
Curriculum was not perceived as their task and I suspect that they engaged in
conversations to please rather than to explore. This has echoes of a comment from
Barrs (1994), that progression is an attractive idea educationally and anybody who
queries it is liable to look unreasonable.

The dominant theme is existing and/or traditional patterns of behaviour. I suspect
that the social psychologists would find these results unsurprising. In the words of
Mower-White, (1982): 'Many of our beliefs are founded in social reality and we need
other people's opinions to validate our own'. The identification of, and justifications
for, progression in the teachers’ interviews were predictable. Typically, they offered
the orders of the National Curriculum or orders found in many text books. They

_ offered justification for orders from their own learning, (stronger in most cases than
other justifications), from the way that syllabuses are written, and from 'this is what
I always do'. It may be that there is a certain truth in the tradition or that the tradition
is rarely challenged. What is noticeable is that all the teachers found talking about
progression difficult, difficult to articulate, difficult to be clear about, difficult to
validate. Since tradition is one of the main justifications for decisions about
progression, it may be that making sense of someone else's reasoning is, in itself,
quite challenging, or that we think that we ought to know what the progression is,
when in fact there is no one progression.

Logical orders are tempting, and, maybe the fact that there appears to be comfortable
logical orders in mathematics, offers a tidy structure for teaching

A third meaning of thought is belief .... Such thoughts grow up unconsciously.
They are picked up - we krnow not how. From obscure sources and by
unnoticed channels they insinuate themselves into the mind and become
unconsciously part of our mental furniture. Tradition, instruction, imitation -
all of which depend upon authority in some form, or appeal to our own
advantage, or fall in with a strong passion - are responsible for them.... Such
thoughts are pre-judgements, not conclusions reached as the result of personal
mental activity. Dewey (1933). p.7

The teachers rarely talked about their knowledge of mathematics in the interviews. It
may be that the impact of external sources is so strong in determining beliefs and
hence knowledge-in-action, that we are prevented from accessing 'knowing' about the
subject. But what about the future if tradition is the main justification for action
about the curriculum?
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READABILITY OF VERBAL PROBLEMS IN MATHEMATICS: SOME EVIDENCE
FROM SECONDARY SCHOOLS IN SOUTH AFRICA

Author: Dr E.D. Prins
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Abstract: Currently many problems in mathematics are posed in the context of real-life situations.
This not only introduces more language, bur also more issues related to culture. There is a surmise
that readability factors in the ordinary language of mathematics texts often cause unnecessary
comprehension difficulties to students. If this were true for first language students the impediment
experienced by second language students could be even greater. This research used protocol
analysis to identify different types of readability problems experienced by first and second language
readers. Identified problems are reported in five categories. The hypothesis that improved
readability will improve achievement was tested by a composite test using questions with varying

degrees of readability. A few results are reported.
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1. The research problem.

Miscomprehension in mathematics has more far-reaching consequences than in most other subjects.
Exact reasoning necessitates exact understanding. During the last few years educators have become
increasingly aware of the important role reading and lang'uage play in the successful
accomplishment of mathematics tasks - especially amongst second language learners (Adetula, 1990;
Lagerwerf, 1992:36). More and more ordinary language is presently being used in school textbooks
énd therefore also in assessment tasks. Whereas a non-verbal mathematical problem can be pose’d
in an international, precise language - a language students are expected to learn - a verbal broblem
has to be set in a language that takes the linguistic and cultural aspects of the reading audience into
consideration. When writing for large audiences this is a difficult commission. There is a surmise
that readability factors in the ordinary language of mathematics texts often cause unnecessary
comprehension difficulties to students. (Weermaln,_1994:167)‘ If this were true for first language

readers, the impediment experienced by second language readers could be even greater.

The issue of second language readers is especially relevant to a country like South Africa. More
than 80% of all secondary school students are black a’nd receive their secondary education in a
language which is not their mother tongue. Primérily this research was concerned with one aspect
of the language issue, i.e. readability problems related to ordinary English in mathematics texts.
For a writer it would be important to know what makes one text more readable than another.
Research questions like the following arose:

- What type of readability factors in the ordinary language of mathematics texts prevents a

clear understanding of a mathematics problem?
- What is the influence of readability factors on achievement levels of African pupils whose

home and school cultures are often different?

2. Readability: a brief theoretical background

2.1 Defining readability

Readability needs to be defined because the term is used in different senses. The majority of
researchers have identified readability with comprehensibility (Selzer, 1983:73). For the sake of
this study readability is defined as the ability of the text to communicate the intention of the writer
to the intended reader. Literature suggests that réadability be approached from a cognitive zind
psycholinguistic point of view. The cognitive approach focuses on the reading process and

investigates the mind of the reader whereas in psycholinguistic theory, language is the dominant
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factor and interaction between reader, writer and text plays an important role.

2.2 Psycholinguistic factors influencing readability

2.2.1 The reader

A reader’s background knowledge as well as his/her language proficiency have proved to be two
factors that have an important influence on readability. Background knowledge is the linguistic
equivalent for what cognitive theorists call schemata. or mental constructs. Successful
communication between reader and writer is based on shared schemata - on those available to the
non-specialist partner of the communication process. It is clear that for second language readers,
comprehension problems, due to a lack of background knowledge, will be intensified by a weak

language proficiency.

2.2.2 The text
Mathematics text normally contains a certain amount of ordinary English together with portions of

the mathematics register. Textual issues influencing readability can therefore be related to either.

2.2.3 The writer

Readability of téxt depends to a large extent on writers’ choices. School mathematics texts could
easily lead to miscomprehension because the reader and writer are not equal. Comprehension
problems could be aggravated even more if differences between reader and writer were' extended

to the cultural level (Bisﬁop, 1993).

2.3 Cultural factors influencing readability

Reading in a second language is not only a matter of language acquisition. It is also a matter of
learning another culture. Differences in cultural behaviour have proved to cause problems in written
and oral communication (Hall & Hall, 1989; Wierzbicka, 1991). When considering cultural
influences on the comprehension of mathematics text, two manifestations of culture seem especially
relevant. The one is the relationship between cuiture and the structure of a language and the other,

the influence of cultural experiences.

2.4 The two experiments
After all is said and done it is not quite clear how students themselves experience the ‘readability

of mathematics texts. The best way to find out seemed to be to go to the students themselves.
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Two experiments were initiated. First a protocol study was launched to find answers to the research
questions. Analysis of students’ protocols not only revealed various readability problems, but also
generated the hypothesis which was tested in the second experiment. This paper will report mainly
on results from the first experiment

3. The protocol study

Students were 17-18-years old. Three different language groups were involved: a first language
group (the E1 group) and two second language groups. One second language group, the E2 group,
had Afrikaans as first language while the other second language group comprised African students,
the E3 group. Afrikaans is a language with Germanic roots and therefore related to English,

whereas the African languages are in no way related to English.

There were six students in each language group and all of them were high achievers of

mathematics. Students did the think-aloud protocols individually. They were asked to read and think
aloud as they solved nine previous examination questions. The questions represented so-called word
problems. All think-alouds were captured on tapes. After students had completed the think-aloud
experiment, they were asked to adapt the nine questions to a more comprehensible form (cf.

Appendix for the original and adapted versions of Questions 3 and 5).

3.1 Results and discussion of think-aloud protocols.

Although the talk-alouds revealed that all three groups encountered readability problems, African
readers (the E3 group) experienced most problems more intensely. Increased anxiety was clearly
audible on the tapes of E3 readers and readability problems at times even caused communication
breakdowns - something that never happened to the other two groups. As the analysis of protocols
progressed, it became clear that E3 readers found the mathematics text less accessible than their
El and E2 counterparts not only because of linguistic reasons, but also because of cultural issues.
Cultural thought patterns, culturally biased contexts and cultural issues related to reading behaviour

had a definite impact on how readers experienced the readability of questions.

Readability problems were identified by carefully listening to the think-alouds. Factors causing
comprehension difficulties were grouped according to the following five categories: Difficult
vocabulary; Text structure; Obscure information; Visualization difficulties and Non-verbal factors.

A variety of readability problems were identified in all nine questions. For the sake of this paper

O 4-36

as

Aruitoxt provided by Eic:



the report will focus mainly on results generated by the analysis of African readers’ protocols. Only

a superficial report is possible. The first two categories will be discussed in a bit more detail.

3.1.1 Difficult vocabulary ]

Although difficult vocabulary is problematic for all kinds of readers, in mathematics it causes more
problems for second language readers. The protocols confirmed that second language readers are
often unable to discern whether the meaning of a difficult word is absolutely necessary for solving
a mathematical problem. Listening to the think-alouds also confirmed that most E3 readers process
information bottom-up and a difficult word often hinders a global conceptual analysis or recognition

of relationships between variables.

Question 5 had a few words and phrases that caused comprehension problems even for first
language readers namely, urilized, profit margins, optimal search line, daily capacity. Question
5.3 caused much anxiety and to some E3 readers, even a complete compréhension breakdown. One
reader took 47 minutes to do question 5 and could not get further than section 5.3. She kept on
saying: "I don’t understand the question.. Oh, I don’t know... Oh, I'm taking too much time" After
another 13 minutes she despondently said, " I'll come back to this one later if I have enough time."

Néedless to say she never came back.

The think-alouds not only confirmed the need of the E3 group for more plain language, but also
the need for more time to read and process information. Need for more time could be because of
the relative weaker language proficiency in English, but the need could also have a cultural basis.
Some of the E3 talk-alouds took more than twice as long to complete than those of the other second

language group.

3.1.2 Text structure

This category refers to problems related to the overall organization of text, whether in sentences
or overall discourse. The talk-alouds verified the importance of structural issues for second
language readers (Kieras, D. 1978). In Question 3 the composition of the text has in a sense
violated the principle of hierarchical progression by inverting the order of importance. The
irrelevant, redundant information concerning 8000 calculators is given in the prominent first
sentence, whereas the crucial information' that the selling price refers to only one calculator is

reserved for the inferior last position of the text. More E3 readers tripped over this hurdle.
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Another important structural issue causing comprehension difficulties, was the issue of cultural
thought patterns (Kaplan, R. 1980). When comparing the analysis of the think-alouds with the
students’ adaptations it became clear that often the linear thought patterns of predominantly English
or Afrikaans writers, made the text less accessible for E3 readers. One noticed that the adapted
formulations of E3 readers were inclined to have a circular structure resembling the cultural thought
patterns of their mother tongue. Not only was the information more descriptive and more explicit,

but it was also more repetitive and had a recurring nature.

3.1.3 Obscure information
Information of this kind is not clearly understood and causes uncertainty within the reader.
Different reasons for obscurity were identified like: confusing information, culturally biased

contexts, contradictory and senseless information.

3.1.4 Visualization difficulties
Information that is too abstract or too condensed often makes it difficult to form an image of the

communicated information. Readers find sentences that are easy to visualize, easier to understand.

-For example,‘ the rather abstract information in Question 5 made it difficult for students to form

an idea of the situation.

3.1.5 Non-verbal factors
This category refers to letter symbols or mathematical formulae used in such a way that it interferes
with the processing of information. This happened in various ways: inappropriate or ambiguous

use of the letter symbol; entangled verbal/non-verbal information and artificial functions.

3.2 Formulating the hypothesis

During the protocol experiment, students also wrote down their solutions. On average, test scores
pro;'ed 26% lower than students’ school performance. Although readability factors could have been
responsible for low test scores, one was not sure whether the level of mathematical difficulty was
not the main reason for the students’ poor performance. It seemed necessary to test the following

hypothesis:

Improved readability of the ordinary language in mathematics examination questions will

improve achievement.
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4 The experiment to test the hypothesis.

A composite test was used to test th;e hypothesis. The test contained the same nine questions,
but were set in different versions: original, adapted and non-verbal. More than 300 students,
representing all language groups, wrote the test. The hypothesis was confirmed in a number of
important cases. To form a general idea of the effect of improved readability on achievement

one could consider the total improvement of test scores across all nine questions.

Average percentage score of all nine questions for the original and adapted versions

Group Average % for | Average % for % Gain: p-value
nine original nine adapted
versions versions

El (n=108) 19 61 12 p<0.02**
- E2 (n=108) 3l 70 19 p <0,001**
E3 (n=108) 4] 33 14 p <0,002**
EI+E2+E3 4 62 /5 p <0.001**

(n=324)

Differences in scores berween the original and adapted versions were tested by subjecting the

differences to the Mann-Whitney U-test.

5. Closing remark

Various conclusions were drawn from this study (Prins, 1995). Whereas writers

of mathematics text can do very little to improve the language proficiency of their reading
audience, the results of this study do emphasize the responsibility of writers to make their text
as comprehensible as possible. In fact, the first step towards successful problem solving is to
fully understand the problem (Polya, G. 1946). One should also keep in mind that readability
problems not only have the potential of affecting achievement. Issues like mathematics anxiety
and attitudes toward mathematics are also likely to be influenced. If one were to apply the
advice of Ausubel to writing one could conclude by saying, "Ascertain the reading needs of

your audience and write accordingly”

-
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IMAGES AND DEFINITIONS FOR THE CONCEPT OF EVEN / ODD FUNCTION

Shakre Rasslan and Shlomo Vinner
The Hebrew University of Jerusalem, Israel

ABSTRACT

Definitions and images, us well as the relution between them of the even + odd function
concept, were examined in 184 Arub and Jewish Israeli high school studenis. A questionnaire
was designed to exhibit the cognitive schemes for the even ; odd Sfunction concept thut
becomes active in identification problems. One of the research questions aimed 1o check
whether the students know 1o define the concept of even / odd function. Arother question was
whether the students know how to apply the definition of the concept for specific functions. A
third question was whether the students know 1o link the graphical aspect with the algebraic
aspect of the concept. The results show that 54% of our sample knew the definition, but only
between 14% to 30% of the students knew how to implement the definition.

The study examined several aspects of the images and definitions that junior high school
students have regarding the even / odd ‘function. Concept images and concept definitions
(henceforth called images and definitions) have been discussed in detail in several papers
(Tall & Vinner, 1981; Vinner, 1983; Vinner & Hershkowits, 1980; Vinner & Dreyfus, 1989).
We will therefore introduce them here very briefly. All mathematical concepts except the
primitive ones have formal definitions. Many of these definitions have been introduced to
high school or college students at one time or another. The student, on the other hand, does
not necessarily use the definition when deciding whether a given mathematical object is an
example or a nonexample of the concept. In most cases, he or she decides on the basis of a
concept image, that is, the set of all the mental pictures associated in his / her mind with the
name of the concept, together with all the properties characterizing them.

The concepts of even as well as odd function are central in the chapter about functions and
their graphs. In many countries, including Israel, the chapter on functions and their graphs is
taught in the tenth grade. The topic is mentioned again and again in high school courses and
elementary college courses (pre-calculus and calculus). In most mathematical textbooks one
can find definitions such as the following: A function is said to be even if f{x) = f(-x) for all x.
A function is said to be odd if f(x) = - f(-x) for all x. (Lang, 1973, p.16).These definitions are
algebraic, formal, rigorous and general. The even/ odd function concept has graphical aspects
according to symmetry (The graph of an even function is symmetrical according to y axis, and
the graph of an odd one is symmetrical according to the origin of the coordinate system).
Sometimes, in order to present a new concept, authors of mathematics textbooks limit
themselves first to a "special case” in which they state a rigorous definition at the early
learning stage. Obvious examples of concepts can be found in these textbooks such as
derivative, increasing or decreasing function, and even / odd functions as well. The "special
case" in our instance was the power function of the form f{x) = x" where n is natural. The
definitions of the even function or the odd function concepts were stated rigorously by
observing the even power function of the form f{x) = x" where n is even and the odd power
functions of the form f(x) = x" where n is odd. The “special case” approach frequently causes
serious difficulties in the formulation and the application of concept definitions (Vinner and
Dreyfus, 1989; Rasslan, 1996). In a previous study (Ben David, 1986), where a close
observation was made on 10" grade class, it was found that there seemed to be a tendency
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among high school students to relate the concept of even / odd function with the even / odd
exponent of a polynomial function. It was found that 7 students out of 26 had this tendency.
One of the tendencies the first auther found during his experience in teaching mathematics is
that for a certain number of high school students the misconception that, in general, a
tunction must be even or odd, therefore; a function which is not even was understood as
being an odd function. This misconception was not reported earlier.
Many of the difficulties students have with mathematics are a result of communication
failure. The pseudo-conceptual behavior phenomenon discussed in detail in several papers
(Vinner, 1994; Rasslan & Vinner, 1995) are example of such failure The pseudo-conceptual
behavior is a behavior which might give the impression that it is based on conceptual thinking
but, in fact, it is not.
The inconsistent behuvior is a specific case of the wmpurlmenlu/l_ulu)n phenomenon
mentioned in Vinner, Hershkowitz, and Bruckheimer (1981). This phenomenon occurs when
a person has two different, potentially conflicting schemes in his or her cognitive structure.
Certain situations stimulate one scheme, and other situations stimulate the other.
This study investigated the following:

. What are the common definitions of the even / odd function concept given by high school
students?

2. What are the main images of the even / odd function concept that these students use in
identification tasks?

. What are the main misconceptions that these students have according to the even / odd
function concept?

4. How frequently do students compartmentalize their formal definition of an even / odd

function and their image of this concept?

(9%}

METHOD

Sample

Our sample comprised three classes of Israeli Arabic students and three classes of Israeli
Jewish students, all 1 " graders. The total number of students was 184.
The Questionnaire

The questionnaire in figure 1 was administered to all subjects in the sample. Questions 1
through 5 were designed to examine some aspects of the even / odd function image of the
respondents, whereas Question 6 was designed to examine their definitions. Questions | and
3 were designed to examine firstly, the ability to reason and the ability to apply the definition
of the even / odd and secondly, to examine the tendency to relate the even / odd function
concept to the exponent of X in polynomial functions (Question 1) and in another functions
(Question 3) which our students knew. Question 2 was designed to examine whether the
students realized the graphical issue of the even / odd function concept. Questions 4 and 5
were designed to examine two tendencies; the first is the tendency of students in high school
to relate the concept of even / odd function to the even / odd exponent of x; the second, the
tendency to conclude that not even function, is an odd function. We believe that special
preparation is required in order to answer these questions, only an understanding of the basic
mathematical language is needed. Such an understanding is a necessary condition to any
mathematics lesson.
Procedure
The questionnaire was administered to the students in thelr classes. They were not asked to
fill in their names, only their background information. It took them 30 minutes at most to

O
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complete the questionnaire. About 40 randomly chosen questionnaires were analyzed in detail
by the authors. On the basis of this analysis the remainder of the questionnaires were

analyzed.

1. Which of the following functions is: even, odd? Explain your answer.
(a) fix) = 1/x. (c) fix)= X4+ xt (e) fix)= x'+3
(b) fix)=x>+x (d) fix) = 1/x* NHfx)=x"+5

2. Graphs of function are given. Which of the functions is even, odd? Explain your
answer. '

' 3. Which of the following functions is: even, odd? Explain your answer.
@y=x = (©y=x+Ixl (e)y=(x+1)*
(b)y=lx| (d)y=|x:+x|
4. Joseph claimed that every even function is a function of the form f(x) = X" (nis even).
What is your opinion about Joseph’s claim? Is it correct? Is it incorrect?
Explain your answer.

5. Is it true to say that if a function is not even, it must be odd? Explain your answer.

6. What is an “even function” in your opinion?
Figure . The questionnaire.

: RESULTS
Definition Category

We categorized the students answers according to methods described elsewhere (Vinner,
1983; Vinner & Dreyfus, 1989; Rasslan & Vinner, 1995) when dealing with other concepts
(function, slope). We illustrated each category using a number of sample responses.

Question 6

Category I: An algebraic definition where the universal quantifiers are missing. (42%).
Examples: 1. f(-x) = f{x). 2. f(-a) = f(a).
Category II' An algebraic definition with a graphical aspect (symmetry according to y
axis).(12%). Example: An even function is symmetrical according to y axis as well as one
which satisfies the condition f(-x) = f(x).
Category III A definition which has the right element as well as an erroneous element and a
use of special case as a universal definition of the concept (16%)
Category IV: Wrong definition (18%). Examples: 1. The even function is an even power
function as well as a symmetrical drawing. 2. f{x) = (x).
12% of the students did not answer the question.

From the above categorization it emerged that only about 54% of the students (categories
I, I1) knew the definition of the even function concept. The remajnder (46%) did not know it.
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Concept Images

Various aspect of the even / odd function concept, as conceived by the students, were
expressed in their answers to Questions | to 5. Some of the major aspects of the even / odd
function concept that played a crucial role in the explanations given by the respondents are as
follows:

Question l.a (f(x) = 1/x)

Category I The student uses correctly the algebraic definition of the odd function (f(-x) = -
f(x)), he uses the letter a or substitutes a number instead of x (34%)
Examples: 1. f(-x) = -1/x = -f(x), the function is odd. 2. f{-a) = -1/a, f(a) = l/a, then the
function is odd. 3. f(-2) =-1/2, f{(2) = 1/2, then the function is odd.
Category II Ritual reasoning. The student recites the definition of the odd function concept
(fi-x) = -f(x)) correctly but he does not try to show that the above function satisfied the
definition (10%). Example: The function is odd because f(-x) = - f{-x).
Category II: Right answer without reasoning (10%). Example: The function is odd.

~Category IV: A wrong answer as a result of different and inexplicable reasons (40%)

Category IV,: The function is odd because f{-x) # f(x) (14%)

Category IV, Failure in the definition’s application (5%)

Category 1V.: Determining the oddity on the basis of the exponent of x (7%) )
Category IVy4: A failure in substitution, meaningless answers or a correct answer but an
incorrect explanation. (14%)

5% of the students did not answer the question (1.a.)

From the above categorization it emerged that only about 44% of the students (categories I,
II) we can claim with certainty know to apply the definition of the concept of odd function
according to the function f(x) = I/x. Regarding another 10% of the students (category 1) we
cannot claim it, but we also cannot claim the opposite. About all the rest (category 1V, and
those who did not answer), 46% of our sample we can claim that the concept of odd function
is not clear to them. The analysis of the parts (b - f) of Question | was done in the same way
as in part a. Table 1 provides information about the percentages of the correct answers. It
turns out that only 14% of the students’ know how to apply the definition to the function
f(x)= x’+3 which is not even and not odd.
Table I Distribution (percentages) of Correct Answers to Question 1 (Parts a - f) (N = 184)

Part a b c d e f
Function fx)=1/x | fix)=x"+x fx)y= x'+x* f)=1/x" | flx)=x"+3 f(x)= x'+5
Percentage | 44 37 50 47 14 39

The last result was especially bad with the function f(x) = x' + 3. Maybe it is a result of the
idea that every function is even or odd. The concept of not even and not odd function is
unreasonable to many students. It turns out for example that 76% of the students who answer
correctly regarding the functlon f(x) = 1I/x and claim that it is an odd function, failed in the
question about f(x) = x' +3, and 72% of the students who answer correctly regarding the
function f(x) = 1/x°, failed in the question about'f{x) = x* +3. In the categorization analysis of
Question 1.a (f(x) = 1/x ) above, it turns out that 7% of the students link the odd function
concept with the exponent (category IV, ). From table 2, it turns out that this approach was
found in higher percentages according to another functions. For example 16% of the students
claimed that the function f(x) = x*+x* is even because the exponent of x is even. Here it can
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be even considered as a correct answer, and there is something new: what guides the students
was the thought that an even function is a “linear combination™ of even powers (or the “sum
of even powers”).

Table 2: Distribution (percentages) of Respondents Linking the Even or Odd Function with
the Exponent of x_in Question | (parts a - f) (N = 184)

Part a b c d e f
Function fx)=1/x | f(x)=x"+x tf(x)= XX fix)=1/x" | f(x)=x"+3 | fix)=x*+5
Percentage | 7 10 16 14 12 11

One of the objectives of this research was to examine the ability of the students to apply the -
definition of the concept even / odd function. Table 3 provides information about our sample
according to Question 1 (parts a - f). The obvious result from table 3 is that between 31% -
79% of our sample who defined the even function correctly (Question 6) answered incorrectly
Question 1 (parts a - f).

Table 3: Distribution (percentage) of Correct Def'nmon of Even Function Concept and
Incorrect Answers to Question | (parts a - f) (N = 100)

Part a b c d e f

Function fix)=1/x Lx)=x;+x fix)= xx? f(x)=l/x2 fix)= x'+3 fix)= x'+5

Percentage | 37 44 32 31 79 49
QUESTION 2.a

Category I: The student used the algebraic definition of the even function f(-x) = fix) in

various ways: (He identified the function formula and used the above definition, or was

helped by a scheme in order to show that the condition in the definition was satisfied) (9%).

Examples: 1. y(-x) = {-x|= [x], the function is even. 2. f(-a) = f(a) (A correct graph was

included), the function is even. 3. f(-2) = f{2) (A correct g,raph was included), even, because

the y is equal.

Category II: Right answer, the student mentioned the definition f{-x) = f{x) but he did not

link it to the specific graph. Thus there was no indication that the student know to implement

the definition. There was no indication of the opposite either. (17%). Examples: 1. The

function is even f(-x) = fix). 2. For every x, -x there is the same y. Therefore, the function is

even. 3. Even, because for every two opposite numbers the same picture exists.

Categog' III: The student used the graphical property (symmetry-to y axis) or used the

detailed definition (the algebraic definition f(-x) = f(x) and the graphical property) (24%).

This category included two subcategories as follows:

Cuategory 111, : The student used the graphical property correctly (19%). Example: The

function was even because it was symmetrical according to y axis.

Category ill, : The student used the detailed definition (5%). Example: The function was

even because it was symmetrical according to v axis, and f{-x) = f{x).

Category IV: Incorrect answers were based on pseudo-conceptual behaviour, or a confusion

between even and odd (29%). Examples: 1. Even function because its graph look like
_ parabola. 2. Even because the line equation is y = x", n is even. 3. Even because the function

is up to x axis. 4. Odd. Because it is the absolute function. 5. Odd, f{(3) = f{-3). It is not even

f(3)=+-3).

Category V: Right answer without reasoning ( 13%). Example: The function is even.

7% of the students did not answer the question.

From the above categorization it turned out that at least 14% of the students (categories I, )

knew the graphical aspect and knew to link it with the algebraic one. About another 10% of
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the students (category I11,) we cannot claim it because they refered to the graphical aspect
only. Another 17% (category II) mentioned the algebraic definition without any link to the
given graph. Those are “suspicted by ritual behavior” which was not based on real
knowledge. A further 13% of the students (category V) gave a right answer without reasoning.
About them we cannot claim that they knew how to link the graphical to the algebraic aspect
of the concept; nor can we claim the opposite. About the rest (category 1V, and those who did
not answer), which are 37% of the students we can claim that they did not know how to link
the graphical aspect with the algebraic one of the even function concept. The analysis of the
other parts (b-d) of Question 2 was similar to part a. Table 4 shows the distribution of correct
answers to Question 2. The obvious result is that only 14% of our sample knew that the
function in 2.c. was not even and not odd function.

Table 4: Distribution {(percentages) of correct answers to question 2 (parts a - d) (N = 184)

Part a b c d

Function \ / _/ \\
> b, | — |

Percentages 50 29 14 41

ERI!

QUESTION 3.a (y=x)
Category I The student used correctly the algebraic definition of the odd function concept f(-
x) = -f{x) and correctly. He used the letter a or substituted a number instead of x. (27%).
Examples: 1. Odd, y(-x) = x, y(x) = x. 2. fla) = a, f(-a) = -a, - f{-a) = -(-a), y = x is odd
function. 3.y =2,y =-2,-(-2)=2, odd.
Category II' Correct answer. The reasoning is ritual. The student repeats the algebraic
definition of the odd function f(-x) = - f(x) (10%). Example: The function is odd, f(-x) = -f(x).
Category III: Correct answer without explanation ( 11%).Example: The function is odd.
Category IV: Nonsensical answers (47%)
Cuategory IV, : The function is odd because it does not satisfy the even function definition
(13%). Examples: 1. The function is odd f(a) # f(-a). 2. -x # x, the function is odd.
Category 1V): Meaningless quotation of the even function definition as a condition of odd
function without any examination (3%). Example: The function is odd f(-x) = f{(x).
Category IV,: The determmatlon of the oddity of the function based on the exponent of x
(3%). Examples: 1.y = x', odd. 2. The function is odd, its power is one.
Category IV, Correct answer with a wrong explanation, or incorrect answer (with or without
explanation (27%). Examples: 1. The function is even. 2. The function is even and odd. 3.
Not even and not odd. 4. The function is odd f(-y) = -x. 5. The function is odd because it is
constant. 7% of the student did not answer the question (3.a)

From the above categorization it turns out that for only about 38% of the students
(categories [, I1) we can claim with certainty that they know to apply the definition of the odd
function to the function y = x. For about another 10% of the students (category 1II) we cannot
claim it but we also cannot claim the opposite. About all the rest (category IV, and those who
did not answer), which are 52% of our sample we can claim that the concept of odd function
is not clear to them. The analysis of parts (b - f) of Question 3 was done in the same way as
in part 3.a. Table 5 shows the distribution of correct answers to all parts (a - e) of questlon 3.
The results were 51m11ar to those of Questions 1 and 2 mentioned above.
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Table 5: Distribution (percentages) of correct answers to question 3 (parts a - ¢) (N = 184)

Part a b c d e
Function y=x y=Ix| y=x>+|x| {y=]x x| |y=(x+1)"
Percentage | 38 40 42 10 11

Table 6 shows the distribution of students who made a link between the even / odd
function concept and the exponent. The obvious result from table 6 was that 11% of the
students linked the concept of even function with the exponent of the function y = (x + 1)™.
The even exponent of the function y = (x + 1% was especially obvious. Those students did
not distinguish between polynomial function of an even exponent of the form f(x) = (x + ¢)*
(when k is natural and ¢ # 0) and between an even power function of the form f(x) = x*
(when k is natural). )
Table 6: Distribution (percentages) of Respondents Linking of the Even or Odd Function with
the Exponent of x in Question 3 (partsa - ) (N = 184)

Part a b c d e

Function y=X y=Ix| y=x*+Ix] [y=1x+x] [y=(x+D*

Percentage |3 1 2 1 11
Question 4

Category I Right answer supported by a counter example (23%)
Category II: Right answer but the explanation was meaningless (5%)
Category HI: Right answer without an explanation (4%) '
Category IV: Right answer with a wrong explanation (10%)
Category V: Wrong answer (with or without explanation) based on the idea that the form of
every even function is determined by an even exponent (49%)
8% of the student did not answer the question.
QUESTION 5
Category I: Right answer supported by a counter example (18%)
Category IT: Right answer based on the definitions of even functions and odd functions (7%)
Category III: Meaningless right answers or right answers without explanations (41%)
Category IV: Wrong answer because of different as well as inexplicable reasons (19%)
Cutegory [V, Right answer with a wrong explanation (14%)
Categorv [Vy: Pseudo-conceptual answers (5%)
Category V: A not even function is an odd function (7%)
8% of the student did not answer the question.

From the analysis of the last two questions, two conclusions emerge:

a) A remarkable percentage of the students linked the concept of even function to an even
exponent appearing in the algebraic representation of the function.

b) Althouh, only 7% accepted erroneous claim in Question 5. The fact that 60% failed to
explain why it should be rejected, is worrying.

Compartmentalization is an interesting aspect of this study. It turns out that 17 students
from those who were mentioned in (a) above claimed correctly the function y =|x]| (Question
3. b) is even function based on the formal definition of the even function concept. It turns out
that also 22 students claimed correctly that the function y = X+ x| (Question 3. ¢) is an even
function.

’
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DISCUSSION

One of the goals of this study was to expose some common images of the even / odd
function concept held by high school students. This has a direct implication for teaching, If
one wants to teach even / odd function to a group similar to our sample, it is important to
know the starting point of its members (Vinner & Dreyfus, 1989). Taking into account the
difficulties mentioned in this study, at least a doubt should be raised whether the “special
case” approach to the even / odd concept is the best way for teaching such a concept. If
simple functions, polynomial functions, absolute value functions, or other strange functions
are needed, we think that they should be introduced as cases extending the students’ previous
experience. The formal definition should be only a conclusion of various examples
introduced to the students. A similar conclusion was mentioned also in Vinner and Dreyfus
(1989) according to Dirichlet-Bourbaki’s approach to the function concept, and in Rasslan
(1996) according to other concepts, such as increasing (decreasing) function concept.
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CONSTRAINTS AND OPPORTUNITIES IN TEACHING PROVING
‘David A. Reid

Memorial University of Newfoundland

Abstract: Analysis of reasoning taking place in classrooms involves more than
consideration of the forms reasoning takes and the needs which motivate it. The
curriculum, didactic contracts, and culture of the classroom constrain what
reasoning can occur. At the same time, discovery activities and opportunities for
discourse can provide occasions for reasoning. This paper briefly considers the
interplay of these constraints and occasions in a Canadian grade 10 classroom.

In previous research (Reid 1995 a,b) I developed a vocabulary for describing
deductive reasoning. This research was based on clinical interviews with secondary
school and university students engaged in open ended problem solving. Recently I
have been attempting to apply this vocabulary to describing the deductive reasoning
of secondary students in their classrooms. In so doing I have also seen the effects of
applying classroom cultures to my vocabulary. In the following I will describe these
experiences in terms of occasions for, and constraints on, deductive reasoning in a
secondary school classroom.

Background on enactivism and evolution

Over the past few years I have been exploring, with other members of the enactivism
research group, the ways in which ideas derived from Maturana and Varela’s
enactivist theory of cognition (Maturana & Varela 1992; Varela, Thompson & Rosch
1991) can be applied to the learning of mathematics. We have addressed such ideas
as the coemergence of learners in a problems solving situation (Kieren, Gordon
Calvert, Reid & Simmt 1995), ways of describing proving (Reid 1995 a, b), the
nature of teaching (Kieren, Gordon Calvert, Reid & Simmt 1996), and research
methodology (Reid 1996a). I will be using enactivist ideas here to describe students’
proving in classroom contexts.

An important idea in enactivism is that of satisficing. This idea is derived from
theories of evolution which posit that organisms do not evolve to optimal states, but
rather any form which is not fatally detrimental continues to be propagated. In such a
view the organism’s environment does not determine the form of the organism, but it
does offer constraints which shape the organism by disallowing certain forms.

In classroom teaching the.idea of satisficing can be applied to mathematical
behaviours. The teacher’s actions and the classroom context do not determine what
mathematical behaviours the students will evolve, but they offer constraints which
disallow certain forms. In practice the forms of behaviour which are allowed are
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likely to exceed the bounds intended by the teacher, because of the interplay of
factors involved in classroom contexts.

In describing what teachers do in classrooms we consider teaching to be providing
opportunities for learning. Because students’ learning is determined by their own
structures the opportunities created by a teacher cannot “cause” students to learn.
When learning does take place we call the opportunities created by the teacher
“occasions.”

Proving as explaining

The classroom context which I will describe here is that of a Canadian grade 10 (=15
years old) middle stream mathematics class. My observations covered three months
of instruction, involving problem solving and group work on graphs of linear
equations and Euclidean geometry. The class used materials which I prepared in
consultation with their classroom teacher, which had been tested in a pilot study the
previous year (Blackmore, Cluett & **** 1996). The materials encouraged students
to explain aspects of graphing linear functions, and theorems in Euclidean geometry.
The teaching methods employed provided students with opportunities to learn to
communicate mathematically, and to work cooperatively in mathematical situations.

In my descriptive vocabulary proving is considered to be in response to one of four
needs: to explain, to explore, to verify, and as part of a social process. As the
importance of proving to explain has been emphasized in recent research (Hanna
1989, 1995; de Villiers 1991, 1992), explaining was presented as the primary motive
for proving in the activities used in the class. Students were encouraged to use
deductive reasoning to explain mathematical propositions, and provmg in this context
meant explaining deductively.

Opportunities: discourse, discovery, debate.

Previous research has suggested that it is through guided exploration and class
discussions that students can best learn to reason deductively (Balacheff, 1991;
Lampert 1990; Fawcett 1938). On most days the class’s activities allowed for a great
deal of exploration and discussion. Prompts were given which presented a situation
and asked for an explanation. These prompts were worked on in small groups (2-5
students per group) and group conclusions were presented to the whole class. The
assumption was made that this pattern would be an opportunity for students to explain
deductively, and to express and clarify their reasoning through social interaction.

The students' discussions often occasioned short explanations, which were sometimes
deductive. One prompt which occasioned some extended reasoning was: “In general
two lines which are perpendicular have slopes which are negative reciprocals. Why?
The following example may help. [The graphs of y=$x and y=-%x were given]” In
one group the students observed that the triangle they had drawn to show the slope
was rotated 90 degrees. They then used this observation to conclude that because the
triangles were rotated the rise indicated by one would be equal to the run of the other,
and vice versa.
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Many discoveries were occasioned by the prompts given the students. These ranged
from procedures to determine equations of lines, to definitions of geometrical terms,
to congruencies related to transversals of parallel lines. In some cases students made
discoveries which had not been anticipated by their teacher and me. For example in
explaining why two triangles were congruent in a particular diagram, they observed
that the triangles formed a parallelogram and asserted their congruence based on the
congruency of the opposite sides.

The process of social debate was especiaily valuable during the unit on deductive

. geometry. In the course of addressing the questions of their peers, their teacher, and
myself, the students clarified and formulated their arguments. One pair presented the
following to the class:

A) Which angles are congruent? Why?

A

£LACB=/DCE
LACE=/DCB

E

— Two angles that have the same measures are congruent.

In the ensuing debate they were asked how they knew the angles had the same
measure. Other members of the class asserted that they had the same measure
because they were “vertically opposite.” This was something they remembered from
the previous year.

As “vertically opposite” had not been defined previously, the class paused to discuss
a suitable definition, arriving at “Two angles that have the same vertex and the
opposite rays from the opposite angle form a straight line.” While this is not the most
elegant definition, it has the advantage that everyone in the class understood it and
accepted it, and it had been carefully thought about by the students themselves.

Once this was settled the pair presenting amended their statement to read: “— Two
angles that have the same measures are congruent. because they are vertically
opposite.”

One of the roles I played in the class was to ask “Why?” In this case this occasioned
a debate concerning why vertically opposite angles have the same measure. Several
members of the class were actively engaged in this debate, contributing suggestions
for ways of expressing ideas and new approaches. - One student suggested several
verbal explanations, and with the help of several classmates arrived-at this written
formulation: “two angles that have a common angle to make them supplementary
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have to be equal.” Again the language is strained, but the students understood its
meaning, and accepted it because it embodied the reasoning they had gone through.

Constraints: curriculum, contracts, culture.

Although the students’ use of opportunities as occasions for learning was
encouraging, even more evident were the constraints which kept them from reasoning
deductively. These included the official and traditional curricula, the roles of the
teacher and students, and the classroom culture.

Some objectives in Unit I: Linear Sentences of the provincial curriculum
(Government of Newfoundland and Labrador, 1993) acted as a constraint on the
students’ reasoning. Objectives 1.6: “Students will be expected to rewrite linear
equations.” (p. 17) and 1.7: Students will be expected to graph a linear equation
using various methods” (p. 18) are typical in their focus on algebraic manipulation
and skill. The amount of time needed to develop the students’ algebraic skill to the
required level limited the amount of time which could be devoted to developing a
deductive structure for the coordinate plane. The short time allotted to the deductive
geometry unit in the provincial curriculum also acted as a constraint as it precluded a
thorough discussion of the properties the students discovered in their explorations.

In addition to the official curriculum, there is also a traditional curriculum which acts
as a constraint on reasoning. The official curriculum objectives for the Deductive
Geometry unit explicitly state that “the overall objective is for students to be able to
produce proofs” (p. 26). The text used for the course, however, adds an additional
objective, that students be able to reason in geometric contexts using algebraic
langilage. A typical” textbook exercise is this:

3gq-20)°

o

p (2p+30)°

(Ebos, Morrison, Spinney & Dalton, 1992, p-319)

Similar exercises are also traditionally a part of the year end examinations. In such
exercises students are expected to determine the measures of the angles by solving
equations. For the most part the students had no trouble setting up the equations
based on the geometric properties of the figure. Solving the equations and making
sense of the result were their main difficulties. The experience of struggling through

This exercise is only atypical in that the diagram contradicts-the information given. Thisled toa |
useful discussion.
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solving an equation was frustrating to most of the students, and limited the time and
mental energy they had to engage in more sophisticated reasoning.

Laborde (1989) describes didactic contracts (originally named by Brousseau, 1980):
the asymmetrical roles assigned to teachers and students as a result of the differing
knowledge they bring to the classroom. As in many classrooms the contract tacitly
agreed at the beginning of the school year called for the teacher to demonstrate
mathematical procedures and for the students to copy them. In expecting the students
to discover mathematical procedures and principles their teacher violated this
contract, and the students reacted by being uncooperative for the first week. As the
students came to understand their new roles the contract was effectively renegotiated,
and the students became more cooperative. In times of stress, however, both teacher
and students returned to more familiar roles and patterns of activity. The original
contract continued to influence what was possible in the classroom.

Lampert (1990) has emphasized the importance of developing a classroom culture in
which students feel at ease proposing conjectures and defending them. For many of
the students in the class involved in my study, they had not experienced such

- classroom cultures in previous years, and did not expect to be a part of one. The

tension between the teachers’ use of her authority to maintain order in the class room
and the intent to provide students with autonomy served to undermine the
development of a culture of mathematical respect. Some were willing to participate
in debates and discussions in a way which fit the developing culture, but others felt
intimidated, and were not willing to state a conjecture unless they knew they were
correct.

Teaching proving: ideas for the future.

- It is not a new observation that mathematical reasoning in classrooms depends as

much on social factors as on psychology. In looking for ways to expand my
descriptions of reasoning I was not surprised to find myself considering the social
dynamics of the classroom — only the extent to which constraints kept deductive
reasoning from happening. The claims I had heard teachers make that their students

did not reason deductively began to' make more sense to me.

‘Considering the social context from the pint of view of reasoning safisficing needs to

" explain, explore and verify (as opposed to satisfying those ne€ds) let me connect the
_ enactivist ideas of constraints and occasions to my existing structure of needs to and

forms of reasoning mathematically.

I am now engaged in elaborating these connection and preparing to add the new
perspective this gives me to those through which I have researched reasoning in the
past. what I hope for is a multifaceted perspective including a multiplicity of
mutually intelligible but distinct points of view, and the consideration of constraints
and opportunities in making sense of students’ mathematical behaviour.
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PROPOSAL ABSTRACT

This paper reports -on current research using a convenient questionnaire
designed to allow mathematics teachers to assess teacher-student interpersonal
behaviour in their classrooms. The paper discusses the various forms of the
Questionnaire on Teacher Interaction (QTI), and reports its use in past
research. The paper provides validation data for the first use of the QTI with
a large sample of mathematics classrooms. It also describes how mathematics
teachers can and have used the questionnaire to assess perceptions of their own
teacher-student interpersonal behaviour and used this as a basis for reflecting
on their own teaching and thus providing a basis for guiding systematic
attempts to improve their teaching practice. .

INTRODUCTION

Most mathematics teachers believe that good relationships with their students
are important. But are the students' perceptions of teacher-student
interpersonal behaviour the same as their teachers? Is there a difference in
mathematics teachers' perceptions of their actual teacher-student interpersonal
behaviour in the classroom and what they perceive to be ideal?

The purposes of this paper are to outline a convenient questionnaire designed
to assess teacher-student interpersonal behaviour and to report its use in
answering such questions as these. The paper describes various forms of the
Questionnaire on Teacher Interaction (QTI) and reports its use in past
research. Finally, the paper describes how mathematics teachers have used the
questionnaire to assess perceptions of their own teacher-student interpersonal
behaviour and used this as a basis for reflecting on their own teaching.

THEORETICAL FRAMEWORK

International research efforts involving the conceptualisation, assessment and
investigation of perceptions of psychosocial aspects of the classroom
environment have firmly established classroom environment as a thriving field
of study (Fraser, 1994; Fraser & Walberg, 1991). Recent classroom
environment research has focused on mathematics laboratory classroom
environments (McRobbie & Fraser, 1993), constructivist classroom
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environments (Taylor, Dawson & Fraser, 1995) and computer-assisted
instruction classrooms (Teh & Fraser, 1994). '

Researchers in The Netherlands extended this research by focusing specifically
on the interpersonal relationships between teachers and their students as
assessed by the QTI (Wubbels, Créton & Hoomayers, 1992; Wubbels & Levy,
1993). The Dutch researchers (Wubbels, Créton & Holvast, 1988) investigated
teacher behaviour in a classroom from a systems perspective, adapting a theory
on communications processes developed by Waltzlawick, Beavin and Jackson
(1967). Within the systems perspective of communication, it is assumed that
the behaviours of participants mutually influence each other. The behaviour
of the teacher is influenced by the behaviour of the students and in turn
influences the student behaviour. Thus, a circular communication process
develops which not only consists of behaviour, but determines behaviour as
well. :

With the systems perspective in mind, Wubbels, Créton and Hooymayers
(1985) developed a model to map interpersonal teacher behaviour using an
adaptation of the work of Leary (1957). In the adaptation of the Leary model,
teacher behaviour is mapped with a Proximity dimension (Cooperation, C -
Opposition, O) and an Influence dimension (Dominance, D, - Submission, S) to
form eight sectors, each describing different behaviour aspects: Leadership,
Helpful/Friendly, Understanding, Student Responsibility and Freedom,
Uncertain, Dissatisfied, Admonishing and Strict behaviour. Figure 1 shows
typical behaviours for each sector. The Questionnaire on Teacher Interaction
(QTT) is based on this model.

DOMINANCE

OFPOSITION
‘COOPERATION

SUBMISSION

Figure 1. The model for interpersonal teacher behaviour
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METHODOLOGY

The study described in this paper is distinctive in that it is centred on students
in mathematics classes, whereas previous research using the QTI has focused
largely on students in science classes. The study involved students in grades 8,
9 and 10 mathematics classes in Australia and was composed of 405 students in
9 schools with their 21 teachers.

Associations between students' perceptions of their interpersonal relationships
with their teachers and their attitudinal outcomes were examined in this study.
The 48-item version of the QTI (Wubbels, 1993) was used to gauge students’
perceptions of student-teacher interpersonal behaviour and student attitudes
were assessed with a seven-item Attitude To This Class scale, which was based
on the the Test of Science-Related Attitudes [TOSRA] (Fraser, 1981).

Using the scales of the QTI as independent variables, associations were
computed with attitude to the class. Simple correlations were calculated
between each QTI scale and each student attitude. Also a multiple regression
analysis, involving the set of QTI scales, was conducted to provide a more
conservative test of the association between each QTI scale and attitude when
all other QTI scales were mutually controlled.

RESULTS

Validity of the QTI

Table 1 provides some cross-validation information for the QTI when used
specifically in the present sample of mathematics classes. Statistics are
reported for two units of analysis, namely, the student’s score and the class
mean score. As expected, reliabilities for class means were higher than those
where the individual student was used as the unit of analysis. Table 1 shows
that the alpha reliability figures for different QTI scales ranged from 0.62 to
0.88 when the individual student was used as the unit of analysis, and from
0.60 to 0.96 when the class mean was used as the unit of analysis. The values
presented in Table 1 for the present sample provide further cross-validation
information supporting the internal consistency of the QTI, with either the
individual student or the class mean as the unit of analysis.

Another desirable characteristic of any instrument like the QTI is that it is
capable of differentiating between the perceptions of students in different
classrooms. That is, students within the same class should perceive it relatively
similarly, while mean within-class perceptions should vary from class to class.
This characteristic was explored for each scale of the QTI using one-way
ANOVA, with class membership as the main effect. It was found that each QTI

scale differentiated significantly (p<0.001) between classes and that the etal
statistic, representing the proportion of variance explained by class
membership, ranged from 0.14 to 0.43 for different classes.
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Table 1
Internal Consistency (Cronbach Alpha Coefficient) and Ability to Differentiate between
Classrooms of the QTI

Alpha Reliability ANOVA

Scale - Results
Student Class Eta2

DC Leadership 0.86 0.93 0.43*
CD Helping/friendly 0.88 0.94 0.29*
CS Understanding 0.88 : 096 0.36*
SC  Student responsibility/ freedom 0.69 0.79 0.23*
SO  Uncertain 0.78 0.87 0.29*
OS  Dissatisfied : 0.83 0.91 0.28*
OD Admonishing 0.84 0.89 0.36*
DO  Strict 0.62 0.60 0.14*

*p < 0.001

Associations between Interpersonal Teacher Behaviour and Student
Outcomes

Table 2 reports the results for associations between students' perceptions of
teacher/student 1nterpersonal behaviour and students' attitudinal outcomes when
the data were analysed using both simple and multiple correlations.

Table 2
Associations between QTI Scales and Students' Attitudinal Qutcomes in terms of Simple
Correlations (r) and Standardized Regression Coefficients ().

Strength of Environment — Outcome

Association

QTI Scale Attitude to Class
or B

Leadership 0.53** 0.24**
Helpful/friendly 0.64** 0.19*
Understanding 0.61** 0.13
Student responsibility/freedom . 0.15%* 0.07
Uncertain -0.35%* 0.07
Dissatisfied -0.58** -0.15*
Admonishing -0.54** - -0.06
Strict -0.40** -0.18**
Multiple Correlation, R ) 0.71%*

*p <0.05 **p <0.01 n =405

l{llC 6%
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Whereas the simple correlation (r) describes the bivariate association between
attitudinal outcome and a QTI scale, the standardized regression weight (f3)
characterises the association between attitudinal outcome and a particular QTI
scale when all other QTI dimensions are controlled.

An examination of the simple correlation (r) figures in Table 2 indicates that
there were eight significant relationships (p<0.05), out of eight possible,
between student/teacher interactions and student attitudinal outcome; this is 20
times that expected by chance alone. An examination of the beta weights
reveals four out of eight significant relationships (p<0.05), which is ten times
that expected by chance alone.

The simple correlation (r) figures indicate statistically significant associations
between the students’ attitude to class and all QTI scales. The beta weights
show that some of these associations retain their significance in a more
conservative test with all other QTI scales controlled. In classes where the
students perceived greater leadership and helpful/friendly behaviours in their
teachers, there was a more favorable attitude towards the class. The converse
was true when the teacher was perceived as strict and dissatisfied.

HOW TEACHERS CAN USE THE QTI AS A SEED FOR CHANGE

A number of mathematics teachers have used the QTI as a basis for self-
reflection. The process begins with the teacher completing the two teacher
versions of the QTI which ask the teacher to rate how they see themselves and
how they see their ideal teacher.

A number of mathematics teachers have participated with the authors in
research and professional development using the QTI.  These teachers are
provided with a report that provides the results from using the QTI in their
classrooms. The report begins with a brief description of the model for
interpersonal teacher behaviour, on which the QTI is based and includes three
sets of data representing the three versions of the QTI. Namely, the teacher
actual, teacher ideal, and mean student actual perceptions of the classroom
teacher-student interpersonal behaviour.

Mathematics teachers using the QTI have reported that they found that the
administration of the questionnaire takes little time and that the instructions to
participants are quite clear. Some students reported difficulties with
understanding words such as "lenient” or "sarcastic”, though no problems were
encountered when these were explained to participants.

After having completed the questionnaire and having had time to read the QTI
report supplied to them, mathematics teachers reported that the results had
stimulated them to reflect on their own teaching. The results of the QTI led
one teacher to comment on verbal communication in her classroom. Based
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upon her sector profile diagrams, she concluded that she had become more
aware of the students' needs for clear communication.  This subsequently
became a focus for her in improving her classroom environment and her
teaching.

When mathematics teachers were asked if the questionnaire had caused students
to work towards a better achievement in their classes, they suggested that
students had thought about some of the issues raised by the QTI. However,
they felt that more time and further testing would be required to measure any
changes in student achievement.

When teachers were asked if they agreed with the results for their classrooms,
the findings were revealing. It was reported that, though teachers agreed with
the results, they raised further questions relating to their individual teaching
practice.  For example, the dimension of Helping/Friendly on the QTI
produced a surprise for one teacher in that students’ perceived a lower level of
teacher helpful/ friendly behaviour than did the teacher. This suggested to the
teacher that the students either needed more help than the teacher was able to
give, or perhaps that the students really "lapped up" the nurturing and wanted
more.

Some teachers reported that students often saw them as being more confident
and better leaders than they perceived themselves to be. Other teachers
suggested that it would be useful to respond to the QTI again after some time
had elapsed so that any trends and changes in teacher-student interpersonal
behaviour could be monitored.

CONCLUSIONS

This study confirmed the reliability and validity of the QTI when used in
mathematics classes. Generally, the dimensions of the QTI were found to be
significantly associated with student attitude scores. In particular, students’'
attitude scores were higher in classrooms in which students perceived greater
leadership and helpful/friendly behaviours in their teachers. If mathematics
teachers want to promote favorable student attitudes to their class, they should
ensure the presence of these interpersonal behaviours.

The three versions of the QTI allow. mathematics teachers to obtain. their
students' perceptions of their interpersonal behaviour, their own perceptions
and the behaviour that they consider to be ideal. This valuable information
then can be used as a basis for self-reflection by teachers on their teaching
performance. Based on this information, teachers might decide to change the
way they behave in an attempt to create a more desirable classroom
environment.

Sector profiles could be used when considering staff development activities as
they provide individual mathematics teachers with information about their
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actual and preferred classroom environments. This information can be used '
to identify areas for personal development in specific classroom environments.
The sector diagrams also could be used as a basis for discussion of teaching
behaviours.  For example, mathematics teachers wanting to improve their
leadership behaviours could organise professional development activities
accordingly.

Mathematics teachers can make use of the QTI to monitor students' views of
their classes, investigate the impact that different interpersonal behaviours have
on student outcomes, and provide a basis for guiding systematic attempts to
1mprove this aspect of their teaching. Furthermore, the QTI could be used in
assessing changes that result from the introduction of new curricula or teaching
methods, and in checking whether a mathematics teacher's interpersonal
behaviour is seen differently by students of different genders, abilities or
ethnic backgrounds.
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BELIEFS AND THEIR WARRANTS IN MATHEMATICS LEARNING
M.M. RODD, CENTRE FOR MATHEMATICS EDUCATION
THE OPEN UNIVERSITY, UK

Abstract

Development of mathematical beliefs, and the warrants for their justification is at the
heart of teaching and learning mathematics. How you justify what you assert or
assent (o is important in all learning, but it is particularly important in mathematics
where justification in the form of ‘proof’ is part of the substance of the discipline. My
investigation employs a philosophical method, (rather than, say, a psychological or
sociological one) and mostly draws from a philosophical literature base. One
consequence of this orientation is that I use the term ‘belief’ in its epistemic rather

. L. . . . =1, ) . .
than its attitudinal sense. To exemplify this: ‘I believe Z; diverges’ is epistemic and

. on=l
: S . . L . .
‘I believe Z; is difficult to comprehend’ is attitudinal. I am interested in different
n=1 .

Justifications for mathematical statements as students learn a new topic.

1. Introduction

The question of warrants for mathematical beliefs, that is to say, beliefs about
mathematical propositions, is relevant and vital for teachers and students. When a
student learns a new topic, he or she does not swallow knowledge as a pill, but, often
tentatively, assents to, then, perhaps asserts, propositions about this new topic. Even at
Ll
the weakest level of just assenting to, for example, ‘=" diverges’ involves holding a
belief . T am interested in the types of justifications, or ‘warrants’, for such beliefs and
how these change.

A further example of the sort of issue in question has been researched by Lee (1994)
She found that the same epistemic subjects assented to the mathematical proposition:
“0.999...=1" after attending a lecture that included this result, but when interviewed
subsequently, while recalling the authoritative answer, indicated their lack of
conviction through such phrases as

“ ‘it is infinitely close but not equal to’, ‘there was a page and a half of
arguments to show they were exactly equal, but still ..part of me said “no they’re
not™ and ‘[yes]...but, I can’t picture it”” (Lee 1994, p 131).

This range of type of assent - even from the same person - on the issue of limits will be
familiar to any teacher of this topic, and points to the issue of Justifications for belief.

 4-64
12




For, the warrant for the belief that the epistemic subject employs, (implicitly or
explicitly), is crucial in their mathematical knowledge development.

2. Method and methodology.
Methodology

Can academic philosophy provide mathematics educators with insights? I think so. My
aim, here, is not to present abstruse parts of academic philosophy with a tenuous
connection to education, but to explore concepts that can contribute to student and
teacher sensitivity and awareness. With this rationale, then, 1 have worked through
parts of the philosophical literature, looking out for writings that I judge fit this brief.
The selection 1 study closely, is, of course, determined by my interests, here the
epistemic notion of ‘belief’, and by my chance and deliberate encounters. So my
‘contribution’ is not to the philosophical theories, but to the application of existing
theories as they are applied to issues concerning teaching and learning mathematics
and to the critque of existing theories by reference to practice.

The particularity of mathematics - beliefs about mathematics, rather than belief in
general - is also central to what I am doing, which is why I consider actual topics in
the curriculum and the specific issues those topics raise concerning belief.

Method

Using topics in the mathematics curriculum that I have taught, I show that there are
philosophical issues about belief embedded therein. 1 offer'a perspective on these
issues which is informed by philosophical writings.

3. Knowledge and belief: the move to justifications.

The ‘person in the street” would probably say that the job of a mathematics teacher
was to teach knowledge of mathematics. Why, then, talk about ‘beliefs’ rather than the
real aim: knowledge?

I'll answer this rhetorical question on two levels. Firstly and simply, as exemplified
above, there is a practical problem of facilitating our students taking on mathematical
beliefs, and transforming these into knowledge. This transformation is rarely within a
teacher's ken, so it would be useful to concentrate on ‘beliefs’. Secondly, as Plato
showed us in the Theaetetus, a useful definition of ‘knowledge’ is elusive. Knowledge
is more than the sum of its constituents, and every component of any putative
definition itself requires definition:

Socrates And it is utterly silly, when we are looking for a definition of knowledge,
to say it is right opinion with knowledge, whether of difference or of anything else
whatsoever. So neither perception, Theaetetus, nor true opinion, nor reason or
explanation combined with true opinion could be knowledge. (trans. Fowler, 1921,
p255)




The last phrase of the quotation above can be paraphrased as: ‘knowledge is justified
true belief’, which, although it had some promise as a ‘definition’ of knowledge, under
closer inspection prompts us to ask questions like “what is ‘justification’?” and “how
is ‘truth’” secured?” In this way, we can get caught, either in circular definings, or in an
infinite regression of nested definitions. Nevertheless, this aphorism can help us get
our bearings, and, ironically, serve as a good starting place for investigation, for it
draws attention to those essential concepts ‘justification’ and ‘truth’. Not only is
Justification prerequisite for any knowledge claim, but it is through justification that
tentative beliefs, like I think, the limit is zero’ can be strengthened by reasoning, ‘the
limit is zero, because J’, where J stands for some warrant, (about which more below).
Knowledge, then, at least requires beliefs that are justified. I am saying that it is the
quality of those justifications which is the key issue in moving those beliefs towards
knowledge. I shall not deal with the meta-epistemological issues of the adequacy of
justificatory standards, but refer the reader to Moser, 1993, (esp. pp 60 -105). Here, 1
focus on learners’ justifications for their mathematical beliefs.

In standard Western philosophy texts (e.g. Quine and Ullian, 1970) questions about
the nature of knowledge, are quickly brought into more manageable form by declaring
that we should focus investigation on propositional knowledge. This means that the
content of this knowledge are propositions to which truth values can be associated and
thus analysed. So breathing in a certain fragrance might in some sense constitute
knowing, but how to appraise this ‘knowing olfactory being’? The Western
philosopher’s trick is to form a proposition from the experience that can considered
true or false: ‘I am smelling heather honey’. There may be some loss, but the gain is
manageability. For the secondary school mathematics teacher, much of the curriculum,
about which the students are to have warranted beliefs, can be expressed in -
propositional form: ‘there is a limit to this sequence of numbers’, the sum of the angles
of a planar triangle is x radians’, ‘the 4th decimal place of = is 5, etc.

Much of the history of epistemology, from Plato to the present day, is concerned with
responses to skepticism. Viewed negatively, skepticism can be characterised as a
knee-jerk reaction (‘we can't know we know’), but viewed positively, skepticism's
challenge forces us to focus on the justifications for our assertions. The contemporary
epistemologist Alvin Goldman observes “It may be possible to have rational beliefs
even if knowledge is unobtainable™ (1986 p 40), which reinforces my rationale for
concentrating on belief. His conception of justified belief “depends critically on the use
of sufficiently reliable cognitive processes” (ibid. p 39). This notion of a ‘reliable
cognitive process’ is clearly relevant for educational interests. So Goldman provides a
theoretical basis for linking the philosophical notion of justification with the practical
concerns of those developing mathematical beliefs (either teachers or students).
Exactly how these ‘reliable processes’ are recognised, exploited and communicated is
not within his thesis; the specifics for mathematics learning are surely to be located in




the domain of mathematics education. Goldman's contribution is significant because,
like teachers, he recognises that the justification is entwined with the justifier.

Justification, then, is the key issue in this epistemological analysis of mathematical
belief. Next, [ want to distinguish various different types of warrant for beliefs that
have a relevance for the mathematics classroom.

4. Types of belief.

Beginning a new topic involves forming a belief. Progress towards knowledge is made
when'those beliefs are justified. Let's take an example to flesh out the meaning of this
statement using trigonometry, which is a new topic for secondary school pupils. Of
course, the children will have beliefs already formed about triangles and angles and
other concepts that are involved in trigonometry, but in this new topic new beliefs are
to be formed.

As an exercise, list some of the beliefs that are pertinent to early trigonometry, to see
how they might be classified. Here's my list all of which concern right angled triangles:

1 - the side opposite the right angle is called the hypotenuse
2 - the hypotenuse is the longest side

3 - if you mark one of the smaller angles, call it o, then o is formed by the hypotenuse
~ and another edge of the triangle

4 - this other edge is called the adjacent side to a
5 - the side of the triangle that does not help form o is 'opposite’ this angle

6 - if the angles of the triangle are fixed, then the ratios of pairs of sides of the triangle
are the same no matter what the size of the triangle

7 - these ratios have special names, for example, tan a=opposite/adjacent
8 - sin o and cos a are always less than 1 (0 < a < a quarter turn)

9 - if o and the hypotenuse are given as actual numbers, you can work out (inter alia)
the opposite side's length using the formula: opposite = hypotenuse x sin & '

10- tan a=sin o/cos o
I can discern different types of proposition here, which I shall call:

(a) information (1,4,5,7): the belief comes from an authority, the warrant is
authoritative, often social (being the practice of the community).

(b) consequence (2,3,6,8,10): the belief comes from a deduction, the warrant is logical

(c) perceived (2,6,8): the belief comes from sense-data, the warrant is perceptual-
empirical




(d) operational (3,9): the belief is related to action, the warrant is procedural (akin to
Vergnaud’s ‘théoréme-en-acte’ (Vergnaud, 1981))

Clearly to the sophisticated, 2, 6 and 8 can be ‘consequential’, I have placed them in
the “perceptual’ category too as this could be the belief forming mechanism.

There are different sorts of warrants, because there are different ways that sentient
beings proceed in their thinking. For example, you may use a logical warrant to justify
your assertion, or you may appeal to a perceptual one; in the example above, you may
wish to justify 2 by noting that the hypotenuse is opposite the largest angle, a logical
warrant, or by measuring many hypotenuses and observing the data (easily done with
Cabri or similar dynamic geometry package), a perceptual warrant.

At this stage I want to mark the distinction between the notion of a ‘cause of a belief’
and that of a ‘justification for a belief’. It is my contention, that is compatible with
Goldman’s ideas about the intimacy of cognition and epistemology, that these notions
are not neatly separable. As a trivial example, I might justify a belief by some
reference to an authority whence the belief originally came. Nevertheless, I'd say that
belief causes were principally cognitive and belief justifications were principally
conceptual. Proposition 6 in my previous list emphasises the distinction: the cause of
the belief might have been an empirical investigation given several similar right
triangles (as the activity in the text book SMP 11-16, Y2 p 22), the justification of the
belief does not have to be given by a corresponding perceptual-empirical warrant - ‘I
measured them and this is what 1 got’ - but could be justified, for example,
‘procedurally’ by subsequent enlargements or deductively, by recourse to similarity.

Furthermore, I observe that because of the ‘proceptual’ (Tall, 1991, “a procept [is] a
process which is symbolized by the same name as the product”. p 254) nature of
mathematical discourse, a conceptual justification at one level can serve as a cognitive
cause of the belief at another. To exemplify this, consider the mathematical proposition
“117, expressed as a decimal, repeats.” Suppose that Brian believes this proposition

because his calculator displays |0142857142] in response to the key sequence
; the cause of the belief is his trust in the machine (an authoritative

warrant) together with what he reads on its display (a perceptual warrant). If Brian
0.14285714
were able to do the division 7)1.00000000, and recognise that the sequence of
remainders from the divisions repeated, and would repeat indefinitely because of the
very process of executing the division, I would say that this would be a justification of
the belief (using a procedural warrant) - and a mathematical one at that! Indeed, once
such a mathematical warrant has been used as justification, this entactive competency
makes it hard to appreciate the tentative nature of the previously used belief warrants.
Furthermore, to elucidate my point above, the explicit division justification feeds
(cognitive) causes for beliefs at the level of “if I work out 1/n as a decimal by dividing
I can only get up to n-l remainders before it starts repeating’ etc. So the belief
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formation process is entwined with the process of justifying beliefs, and hence the
justificatory warrants.

What then are the mathematical warrants within the belief formation process? Even for
the professional mathematician, Lakatos’ analysis (1976) indicates that the deductive
does not constitute the only warrant, although it may be the only one the public is privy
to. For the leamer, the issues are two-fold. First, how are beliefs about mathematical
propositions formed? What warrant justifies the tentative belief? Second, as warrants
are not of equal value in mathematical justification, what warrants the warrant? How
do learners shift to see justification of a mathematical belief in terms of a deductive or
procedural warrant rather than an authoritative or perceptual one?

5. Gettier problems.

Following up the aphorism ‘knowledge is justified true belief’, I want to raise the issue
of the applicability of a warrant for justifying a belief. I suggest that as learners we
may well form beliefs in certain ways, and, as discussed-above, the cause of a belief
may be closely tied to its justification. A little more subtle are ‘Gettier-problems’,
(Gettier, 1963). A Gettier-type problem is of the following type: a true belief has a
justifiable warrant, but the warrant is misapplied. Examples of Gettier problems in the
literature, for some reason, often involve automobile ownership! For example: Fred
believes that Jane has a Morris car. This belief is true, Jane does have a Morris car.
" Fred’s belief that Jane has a Morris is justified by several sightings of Jane driving a
certain Morris. However, that Morris belongs to Jane’s mother. So Fred’s belief is true
and justified, but the justification is not justification for the actual original statement’s
truth: *Jane has a Morris car’. The point is that most people would be uncomfortable
asserting that Fred had knowledge of this item, even though he had justified true belief.

I think that awareness of these sorts of problem might be helpful in diagnosing non-
mathematical justifications. For example, working analogously: Andy believes that the
limit of the sequence ‘1/n’ is zero. This belief is true, the limit of ‘1/n’ is zero. This
belief is justified, he thinks, by ‘several sightings’ of many terms of the sequence. The
justification, like the observations above, is not foolproof. Just as the empirical
observation of seeing someone drive around in a certain car does not imply ownership,
so seeing a sequence get closer and closer to zero does not mean that it does have a
limit and that that limit is zero. o

So there are two sorts of issue concerned with beliefs and limits of sequences. Firstly,
the student’s easily taken-on belief that the limit is the number that (approximately)
pops out after a large number of terms of the sequence have been calculated, but they
still do not believe that the limit actually exists; it is never reached. Secondly, the
Gettier type problem: the student might attribute knowledge to his belief that the limit
of ‘1/n’ is zero, because of his warrant: ‘I have worked it out to thousands of places
several times'. This is a case where we might be uncomfortable to attribute knowledge
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to the student, as his reasonable warrant for empirical propositions, is not the best one
with which to justify a mathematical proposition.

6. Justification for beliefs

The discussion of beliefs, then, moves to discussion on warrants for belief. It is not the
truth or falsity of the proposition that is being investigated, (as we have to do if
knowledge claims are being made), but the various ways beliefs are justified, and,
hence, I suggest, take hold within us.

What warrants are used in mathematics teaching and learning? I have approached this .
question, not empirically, but conceptually, drawing on my teaching experience. | have
suggested, above, a preliminary sorting of the warrants that come from a set of beliefs
that are typical for beginning school trigonometry into ‘authoritative’, ‘logical’,
‘perceptual’, and ‘procedural’. I make no claims to be exhaustive, and I have already
indicated that different warrants might be employed by different people to believe the
same proposition. Although authoritative’ is but one of the warrants, and an inevitable
one if school students are to be inducted into a ‘community of practice’, I suspect that
many kinds of mathematical beliefs held by students are actually only justifiable via
this warrant. There is a .negative connotation to the word ‘only’ in the previous
sentence because, 1 assert, that, despite the importance in belief formation, an
‘authoritative’ warrant is not an ‘essentially mathematical’ one. Here is a paradox
then: we can’t do without a ‘community of practice’ to support mathematical learning,
but the warrants for belief in the mathematical propositions held by that community
cannot just be the ‘authority’ of the community itself, to be mathematical belief, the
Justification must come from other warrants.

In mathematics leaming, progress is made when students to shift from using
authoritative or perceptual-empirical warrants to using logical or procedural ones. To
follow on with the idea of tracking warrants for beliefs: we can envisage the situation
where the teacher, having taught the students, might attribute her student’s warrant for
belief as, say, deductive, yet the student’s warrant is authoritative.

The standard epistemological theories about how knowledge is acquired categorise
routes to knowledge as ‘rationalist’ or ‘empiricist’ (see Grayling, 1996, p 39). This
categorisation is exemplified by 'saying that mathematics and logic are paradigmatic
reason-based knowledge, acquired by the former route, and that natural science is
paradigmatic empirically-based knowledge, acquired by the latter. How useful are such
categorisations for mathematics teaching and learning? Clearly, when any sort of
cognitive development is to be considered, there not only cannot be a clean divide
between the route to knowledge characterised by ‘reason’ and that characterised by
‘(sense)-experience’, but also, the dimensions of authority and of automaticity are
important too. All of these routes, in some sense, can, in Goldman’s terms be ‘reliable
cognitive processes’, but as Moser points out “Notions of justification ...admit of
evaluation, at least relative to...certain conceptual purposes” (Moser, 1993, p 13); the
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purpose in this case is, of course, developing mathematical beliefs. When it comes to
practice, epistemic modality - what is believed, known, or taken to be true - in
mathematics leaming is significant.

Unless awareness of type of warrant is brought to the fore, students’ beliefs about
mathematical propositions are likely to remain at the level of ‘Do I assent to this or
not?’, rather than, ‘If T am to assent to this proposition, what is its warrant?” So for the
student the question to be asked is: what is the sort of justification that has helped, or
might help, me believe this proposition? For the teacher, the question is, through what
warrant(s) am 1 expecting the students to take on this belief? Clearly, there are
important issues concerning which warrants for belief value or promote which qualities
in the student.

References: : .
GETTIER, EL. (1963) 'Is Justified True Belief Knowledge? Analysis Vol. 23,
pp.121-3

GOLDMAN, A. 1. (1986) Epistemology and Cognition,(Harvard University Press,
Cambridge, MA, USA) : .

GRAYLING, A. C(1996) 'Epistemology' in BUNNIN, N. and TSUI-JAMES, E.P.
(Eds.) The Blackwell Companion to Philosophy (Blackwell, Oxford)

LAKATOS, IMRE (1976) Proofs And Refutations (Cambridge University Press)

LEE, B.(1994) ‘Prospective Secondary Mathematics Teachers” Beliefs about
“0.999....=1"" Proceedings of the Eighteenth International Conference for the
Psychology of Mathematics Education (Lisbon) pp128-135

MOSER, PAUL K. (1993) Philosophy After Objectivity: making sense in perspective.
(New York, Oxford University Press)

PLATO, trans. FOWLER, H. N. (1921) Theaetetus (Heinemann, London)

QUINE, W.V. and ULLIAN, J.S.(1970) The Web of Belief (Random House, New
York)

SCHOOL MATHEMATICS PROJECT (1985) SMP 1l - [6: Y2 (Cambridge
University Press)

TALL, DAVID (Ed.) (1991) Advanced Mathematical Thinking (Kluwer, Dordrecht)

VERGNAUD G. (1981) ‘Quelque Orientations Théoriques et Méthologiques des
Researches Frangaises en Didatiques des Mathématics’ Proceedings of the 5t
Annual Meeting of the International Group for Psychology of Mathematics
Education (Equipe de Researche Pedagogique, Grenoble) pp 7 -17 '




Pupils’ Strategies And The Cartesian Method
For Solving problems: The Role Of spreadsheets

Teresa Rojanol and Rosamund Sutherfand?
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(2) SCHOOL OF EDUCATION, UNIVERSITY OF BRISTOL, UK

In this paper we focus on methodological aspects of the transition towards the
algebraic realm. We specifically discuss issues from an Anglo/Mexican project
which are related to the feasibility of switching pupils' informal strategies to
algebraic methods of solving word problems by means of a didactic artifact that is a
spreadsheet environment. An analytic tool adapted from the mathematical analysis
and synthesis process is used to probe the nature of pupils’ productions when
solving word problems.

INTRODUCTION

Expressing the elements of a problem statement as an equation, and solving the
equation to find the numerical value of the unknown is considered an algebraic
method. Students' use of algebraic methods has been for many years one of the main
goals of secondary school. Nevertheless, a number of studies indicate that pupils at
this school level are more likely to use non-algebraic methods when solving word
problems (Bednarz et al., 1992; Lins, 1992). This has led in many cases to focus the
research work on the analysis of pupils' strategies with the aim of probing the nature
of these informal approaches.

Although it is necessary that students experience a detachment from their
informal methods in order to acquire algebraic ones, results from one of the studies
of the Anglo/Mexican Spreadsheets Algebra Project suggest that pupils' informal
processes can be used as a basis to build up "more algebraic” methods of solving
problems when working in a spreadsheet environment (Sutherland & Rojano, 1993;
Rojano & Sutherland, 1992). This collaborative project was developed to help
students to bridge the gap between arithmetic and algebraic thinking alongside two
evolving lines: 1) basic algebra concepts and 2) problem solving methods .The main
aims of this project were to:

¢ investigate the way in which pupils use a spreadsheet environment to represent
and solve algebra problems relating this to their previous arithmetical experiences
and their evolving use of a symbolic language.




¢ characterise pupils' problem-solving - processes along the dimension
arithmetic/algebraic as they evolve through working in a spreadsheet environment.

The project consisted of two phases. The first phase was carried out with two
groups (one in Mexico and one in Britain) of eight pre-algebra pupils (aged 10 to 11
years). Whereas in the se¢ond phase we worked with two groups of eight 14-15 year
olds (one in Mexico and one in Britain) who had had a history of being unsuccessful
with school mathematics. All these pupils were involved in spreadsheet activities
which focused on the notion of function and inverse function, equivalent algebraic
expressions and the solution of algebra word problems. They used a spreadsheet cell
to represent the unknown and then with the mouse or the arrow keys expressed
algebraic relationships in terms of this cell. Dealing with the unknown, both in a
symbolic and in a numeric way, allowed pupils to make a step in accepting the idea
of operating with an unknown quantity, an idea that many secondary students find
difficult (Filloy and Rojano, 1989) but which, in turn, constitutes the core of the
Cartesian (algebraic) method for solving word problems.

Results of the Anglo/Mexican project emphasising the conceptual development
of the pupils have been synthesised in previous papers (Sutherland & Rojano, 1993;
Rojano & Sutherland, 1992, 1993 and 1994). In the present paper we focus on
methodological aspects of the transition towards the algebraic realm. We specificaily
discuss issues related to the feasibility of switching pupils' informal strategies to
algebraic methods of solving word problems by means of a didactic artifact that is a
spreadsheet environment and applying an analytic tool derived from the
mathematical analysis and synthesis process to interpret children’s productions. We
use examples from the study with 14-15 year olds.

THEORETICAL ELEMENTS FOR THE RESULTS ANALYSIS
Arithmetic Methods - Algebra Methods

When trying to characterise arithmetic as well as algebraic methods, there
always exists the difficulty of referring at the same time to the sorts of problems that
are being solved. Puig and Cerdan (1990) retake some of the questions posed by
Kieran & Wagner (1989, page 226) related to the nature of problems and solving
methods, such as a) Are there word problems that are intrinsically algebraic rather
than arithmetic. b) What makes a method of solving a word problem algebraic
rather than arithmetic? In an attempt to answer these questions, Puig and Cerdan
develop an analysis of the translation processes of the problem statement into an
arithmetic or algebraic expression. These authors use as tools of analysis two general
methods: the method of analysis and synthesis and the Cartesian method. The
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latter is considered the algebraic method par excellence and explicitly involves a
translation of the problem into the algebraic code, whereas the first one (the method
of analysis and synthesis) leads to a translation process of an arithmetical nature,
which consists of transforming the initial text of the problem into a new text in
which the elements that intervene in more elementary translations are made explicit,
in order to make explicit, as well, the way these elements are linked within the
arithmetic expression that solves the problem (Puig and Cerdéan, 1990, pp. 38-39).
The intermediate texts produced in this process involve intermediate variables or
unknowns called the antecedents of the unknown (Lakatos, 1978) and the idea is to
produce only given in the final step of this sequence of transformations. This is the
analysis process, and the inverse one (to perform the operations with the givens to
find the unknown value) constitutes the synthesis process.

Puig and Cerdan use an ad hoc diagram to represent the analysis process
(Botsmanova, 1972) which is illustrated in Figure 1.

The Problem

Four pieces of cloth of 50 m each will be used to make 20 suits which need 3 m of
cloth each. The rest of the cloth will be used to make coats which need 4 m each.
How many coats can be made?

The intermediate text

The analysis process:

No. of coats

Unknown of
the problem

The synthesis process:

[(4 x 50) - (20 x 3)[ + 4

E
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Cloth for

coats Arithmetic Expression

Antecedents of

The rest of — the unknown
the cloth /
X
Four pieces 50m 20 suits Im Only givens

of cloth

Figure 1

Puig and Cerdan (1990, pp. 40-42) give examples of problems that can not be
reduced to an arithmetic expression via the method of analysis and synthesis but
which when applying the method of analysis leads to an equation in terms of
unknowns instead of an expression involving only givens. So, in these cases, the
synthesis process is impossible. One of the examples is:
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The Problem

A car departs from a point A bound to a point B with a uniform velocity of 40 Km/h.
Two hours later, another car departs from A bound to B with a uniform velocity of
60 Km/h. What is the distance from each car to A?

According to these authors, in the
limit of the analysis-synthesis the
method becomes algebraic when
the unknown of the problem is
considered as a given, useful to
determine the unknown itself, that
is, unknown and givens are
treated in the same way.

Figure 2

The former is a way of coping with the problem of trying to characterise word
problems and solving methods as either arithmetic or algebraic and can be used to.
highlight phenomena observed in studies with pupils solving algebra word problems.
The adaptation of the analysis - synthesis process carried out by these authors
provides a tool of analysis that is used to interpret pupils' productions in the
Anglo/Mexican Spreadsheets Algebra Project .

ARITHMETIC / ALGEBRAIC APPROACHES
Analysis of a problem of the pre-interview.

Children's strategies to solve algebra word problems give account of a solving
approach which proceeds from the known to the unknown. This approach is in
opposition to that of algebra in which working with unknown quantities is in the core
of the method. The Chocolates Problem is a word problem that was presented to the
students in the pre and in the post-interview. The relationships between the
unknowns are explicitly given in this problem and it is considered of a high degree
of difficulty because it involves three unknowns. For this reason, this problem was
presented only to the 14-15 year old pupils (in Mexico and in the UK). )

The Chocolates Problem

100 chocolates are distributed amongst three groups. of children. The second group
receives four times the number of chocolates as the first group. The third group
receives ten chocolates more than the second group. How many chocolates does
each group receive?
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An algebraic solution to this problem leads to a set of equations such as the
following:

where x is the number of chocolates of the first group; y

y =4x the number of chocolates of the second group, and z the
x=y+10 number of chocolates of the third group
x+y+z=100

Which gives the solution: x = 10; y =40 and z=50

Table 1 showé solutions and strategies used by 14-15 year olds in the
Chocolates problem.

Pre-interview Post - interview
Meéxico Solution Strat Solution . Strat
Giselle No Soln. 10, 40, 50 SA (C&S)
Aida 20,33,47 W/P 10, 40, 50 SA (C&S)
Enrique No soln. 10, 40, 50 SA (C&S)
Zazil-Ha No soln. . 10, 40, 50 SA (C&S)
Pilar No soln.

Alejandra No soln. 10, 40, 50 SA (C)
Edgar 10, 40, 50 T/R 10, 40, 50 SA(M/C)
UK Solution Strat. Solution Strat.

Eloise No soln. 10, 40, 50 SA
Sally 33, 33, 33 W/P 10, 40, 50 SA (C)
Carla 33,132, 1 T&R 22,132, 1320; 10,40, 50 | T&R SA(C)
Lucy 33,3 WP 10, 40, 50 SA (C)
James 10, 40, 50 T&R 10, 40, 50 SA (C)
Lee No soln. 10, 40, 50 T&R
Anthony No soln. 15, 60, 25; 10, 40, 50 T&R-SA(C)
Dennis No soln. 10, 40, 50 T&R

SA = Spreadshet/Algebraic; C = Computer; T&R = Trial & Refinement; E/P = Whole/Parts; § = Support

In the pre-interview only 2 out of 7 pupils approached this problem in Mexico
and 4 out of eight pupils solved it in the UK. Whole/parts strategy (dividing 100 by
3) and Trial & Refinement strategies (assuming a numerical value for one of the
unknowns and varying this value until conditions of the problem are fulfilled) were -
used in this problem; the latter led James (in UK) and Edgar (in Mexico) to the
correct answer. The presence of the whole/parts strategy was most of the times
accompanied by leaving aside the constraints of the relationships between the
unknowns. The whole/parts strategy corresponds to proceeding from the known (the
total amount of chocolates) to the unknown (number of chocolates for each group).

From the analysis of pre-interview outcomes, it can be concluded that students'
informal strategies in the group of the 14-15 year olds, involved in most of the cases
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proceeding from the known to the unknown, which can be interpreted as a preference
to deal with known quantities. This is a clear manifestation of a non-algebraic way of
thinking. Such informal strategies can be described in terms of the analysis and
synthesis method.

Proceeding from the unknown to the known

Concerning the trial & refinement approach, it is noticeable that excepting Carla in
the UK, the rest of the children who applied this strategy in the pre-interview could
reach a correct answer in the Chocolates Problem (James in the UK and Edgar in
Mexico). The way in which these children worked out this problem, assigning one of
the unknowns a "provisional" numerical value ( for example, the number of
chocolates of the 1st group) suggests the following analysis process diagram:

Trial and Refinement Strategy for solving the Chocolate Problem

3rd Synthetic expression:
group ({(Xx 4)+10)
2 The total amount is incorporated: .
2nd ' (X x 4)+10)) + (X x 4) + X = 100
group +
st ? 10 The latter is clearly an equation whose
group " solving process involves dealing with one of

the unknown quantities (X) from the very
[Z 4 " beginning. What some children do is to assign
a numerical value (for example, 33) to the 1st
group and (in the diagram) this is a way to reduce the antecedents of one of the
unknowns to numeric al data, and the corresponding synthetic expression would be:
((33 x 4)+10))+(33+4)+33.

The actual process that the pupils using this approach carried out was to treat
the unknown as a given and then find out the second and third unknowns proceeding
upwards (according to the diagram) by means of establishing the relationships
between the unknowns and using the total amount of chocolates as verifier of their
testing out procedure. It is necessary for being successful with this strategy to be
aware of and keep in mind the complete set of relationships present in the problem
and to explicitly use a verifier of the attempts undertaken. Indeed, most of the pupils
using this strategy didn't leave aside any of the problem's constrains. This case
recalls the example developed by Puig and Cerdan (1990) which illustrates the idea
that some problems can not be reduced to an arithmetical expression applying the
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analysis-synthesis method, but instead, this method leads in such cases to an
equation and then can be seen as Cartesian.

We want to stress the idea that when pupils, who are reluctant or unable to use
algebraic tools to approach an "algebraic” word problem, bring into play informal
(T&R) strategies, which have one aspect in common with the algebraic (Cartesian)

" method, that of considering the unknown as a given, useful to determine the

unknown itself. In other words, the unknown becomes one of the antecedents in
the analysis-synthesis process.

DEVELOPMENTS IN APPROACH.

Table 1 shows children's solutions and strategies when solving the Chocolates
Problem in the post-interview. It can be noticed from this table that the whole/parts
strategy is still present in the post-interview. A combination of Whole/parts with a
spreadsheet-algebraic (SA) method appears in the Chocolates problem in the post-
interview. In most of these cases, the whole/parts approach was used to make a "first
estimate" of one of the unknowns of the problem before carrying out the variation of
the unknown when searching for the value of the other unknowns.

The combined strategy (W/P and T&R) can be attributed to the spreadsheet
method that makes it possible to.conciliate a non-algebraic approach (W/P) which
proceeds from the known to the unknown, with a "more" algebraic approach, which
proceeds from the unknown to the known.

PRE-ALGEBRA STRATEGIES, THE SPREADSHEETS METHOD AND THE CARTESIAN
METHOD: FINAL REMARKS

It is important to notice that whereas in the cartesian method the part of putting in
equation corresponds to the action of finding out two equivalent algebraic
expressions for the problem's state of affairs, and then linking these expressions
through the equality sign, in the spreadsheets method used in the experimental work,
all the partial (or elementary) relationships between givens and unknowns and
between unknowns are symbolised in separate but related cells and all these
relationships are finally synthesised in one expression which serves as control of the -
variation of one of the unknowns. From this point of view, besides proceeding from
the unknown to the known, these two methods don't seem to have more in common.
Nevertheless, if we analyse pupils' productions when working with the spreadsheet
method, in the light of the analysis-synthesis procedure diagrams, it is possible to
observe that at least in the analysis part, both methods are alike. This is because, in
the cartesian method, the pfoduction of the two equivalent expressions is preceeded
by the production of partial (elementary) relationships which incorporate the
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unknowns to the procedure at the same level of the givens, in order to get all the
necessary antecedents to determine the unknown values. Just what children do when
elaborating the spreadsheets formulas involving unknown quantities!
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FALLIBILISM AND THE ZONE OF CONJECTURAL NEUTRALITY

Tim Rowland
Homerton College, Cambridge

A fallibilist approach to teaching and learning mathematics depends on classroom
dialogue in which students’ conjectures are articulated and tested. Whilst the
examination and possible refutation of such beliefs is a neutral process from an
intellectual point of view, it is difficult for many students to approach it with emotional
detachment. The notion that the conjecture is on trial, and not the student, is a subtle
one, and students can feel personally threatened when their conjectures are debated
and tested. This paper examines a construct named the Zone of Conjectural Neutrality
(ZCN), a neutral space in which students’ ideas are tested. Proposals are made for
some methods whereby fallibilistically oriented teachers might locate students’
conjectures in the ZCN.

FALLIBILISM

An absolutist view of mathematics would hold that mathematical truths are sharp and
certain, and in some way represent objective knowledge. Indeed, in this view,
mathematics stands above and apart from empirical science in its purity and freedom
from experimental error. Science can only offer 'theories’, whereas the products of
mathematical thought are objectively 'true’.

317 is a prime, not because we think so, or because our minds are shaped in one
way rather than another, because it is so, because mathematical reality is built that
way. (Hardy, 1940, p. 130)

Over the last century, absolutism has been worked out in two major forms, logicism and
formalism. The logicism of Frege and Russell attempted to reduce all mathematics to
pure logic. Hilbert took the formalist view that mathematics is more than pure logic, but
is capable of being axiomatised. Both forms have been questioned from within
mathematical logic; the deductive arguments which terminate in mathematical theorems
must begin from a baseline of axioms, which are plausible products of observation or
intuition. Any claim to absolute truth must then be suspect, since the very foundation is
beyond the reach of demonstration.

A different 'fallibilist’ critique of absolutism is presented by Imre Lakatos in Proofs and
Refutations (1976). Central to Lakatos' critique is the failure of formalism to account for
the growth of mathematical thought, either in peoples (phylogenesis) or in individuals
(ontogenesis). Lakatos offers an alternative view of mathematics as the product of
human mathematical activity and inter-personal dialogue.

[...] informal, quasi-empirical mathematics does not grow through a monotonous
increase in the number of indubitably established theorems, but through the
incessant improvement of guesses by speculation and criticism, by the logic of
proofs and refutations. (op. cit. p. 5)
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Instead of presenting symbols and rules of combination, [Lakatos] presents human
beings, a teacher and his students [...] he presents mathematics growing from a
problem and a conjecture [...] doubt giving way to certainty and then to renewed
doubt. (Davis and Hersh, 1980, pp. 346-7)

Lakatos' account of mathematical growth is set against the background of Polya's
mathematical heuristic and Popper's critical philosophy of science. The term ‘quasi-
empirical' mathematics refers to the observation that conjectures are the inductive
outcome of consideration of 'data’ collected in mathematical activity. An asymptotic
refinement of definitions, theorems and proofs, argues Lakatos, is the outcome of
human dialectic, acted out in the histories of cultures, and again (though not necessarily
in the same way) in the classroom. In this fallibilist view, mathematics is a relative and
subjective form of knowledge, perpetually open to revision.

Sandy Dawson has explored the profound implications of Lakatos’ quasi-empiricist
philosophy for the teaching of mathematics.

It was from ideas contained in Lakatos' articles and book that an alternative way of
working in mathematics classrooms developed. [...] Lakatos claimed that the
creation of mathematics comes about as the result of a process [...] in which a
conjecture is created, tested and proved, or refuted and modified, or rejected
outright. A classroom designed for pupils to operate in a fallibilistic fashion would
provide pupils with a problem about which they could make conjectures as to its
solution. [...] Opportunities to test and examine critically each conjecture must also
be provided. (Dawson, 1991, p. 197)

With such an epistemological climate in mind, John Mason has described the qualities
of what he calls a ‘conjecturing atmosphere’, in which

every utterance is treated as a modifiable conjecture! (Mason, 1988, p. 9)

One of the features of a classroom "designed for pupils to operate in a fallibilistic
fashion" is the exploration of problems - what have been called 'investigations’ in the
UK - with the aim of arriving at plausible mathematical insights as a result. It is then
essential that such speculations ('guesses’ even, according to Polya and Lakatos) be
articulated by students, so that they are available for critical examination.

AFFECTIVE CONSIDERATIONS

A fallibilist view of mathematics has implications for classroom conduct. In
mathematics talk there is an affective subtext just below the surface of the propositional
text. It is there because mathematics is a human activity: the participants care about the
mathematics, but they also care about themselves, their feelings and those of their
partners in conversation. The possibility of active construction of knowledge from
reflection on experience is at the heart of a constructivist view of learning. Such a view
puts an onus on the teacher to try to understand the form, content and robustness of that
knowledge, as an observer of and participant in pupils' mathematical activity - an
"accultured" participant, moreover, who "can legitimise certain aspects of their
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mathematical activity and sanction others" (Cobb et al., 1992, p.-102). At the same
time, a fallibilist view of mathematical knowledge requires that the teacher is not a
uniquely privileged arbiter of pupils' conjectures, but rather one who urges the pupils
themselves to take a reasoned position in the acceptance or refutation of such
conjectures.

Students’ self-constructed beliefs may be fragile; in particular, any inductive conjecture
would be expected to be tentative. The burden of the affective baggage associated with
mathematics in school then necessitates that the pupil articulate the belief whilst
distancing her/himself from full commitment to it. That is to say, they must convey their
propositional attitude to the substance of their assertion. The rich variety, in some cases
the subtlety, of hedges and modal forms deployed by pupils for this purpose is
discussed by Rowland (1995, 1996a), and is evidence of this affect-oriented dimension
of pupils' communicative competence. These markers of modality are linguistic pointers
to uncertainty and attendant cognitive vulnerability. The teacher's subtle task at such
moments is to promote the trial and possibly the rejection or modification of such

_ assertions as regards their truth, whilst minimising the personal sense of threat to the

E

students who utter them. In the next section, we see how one teacher tries to achieve
this. :
THE ZONE OF CONJECTURAL NEUTRALITY

In the following fragment of transcript, a primary [elementary] school teacher, Hazel, is
talking with two ten-year-old girls in her class, Faye and Donna. The conversation is, in
effect, an exploration of the difference between b2 and ac, where a, b, ¢ are consecutive
terms of an arithmetic sequence. Initially the girls considered the case when the'
common difference is 1.

Early in the conversation Faye observes a difference of 1 between 10x12 and 112,

7 Faye: There's only one, umm ten multiplied by twelve is a hundred and twenty.
Eleven multiplied by eleven is a hundred and twenty-one

8 Hazel: Okay
9 Faye: So there's one number difference
Hazel highlights the observation, and asks:

10 Hazel: One number difference ... do you think that will always happen when we
do this ... ?

Faye readily agrees, but Hazel seems to want to give the girls more of an option to

disagree. :

12 Hazel: What makes you think that? Just 'cos I asked it ... or ...?

Donna gives hedged agreement [14].

14 Donna: I think so.
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Hazel encourages the children to try out two more examples with three consecutive
integers. They obtain a difference of 1 in each case and Faye affirms her belief that, as
Hazel puts it [10, 26], "that will always happen".

26 Hazel: Do you think that will always happen then?
27 Faye: Yes.

28 Hazel: How can you say for certain ‘cos you've only tried out three examples?
When pressed by Hazel to account for her belief [33], Faye attempts a start, but
immediately backs off [34]: '

33 Hazel: ... why do you think that for certain?

34 Faye: Because ... well, I don't know for certain but I think ... ‘cos the numbers
that we've done are quite close to the first ...

. Faye's "well" [34] suggests that she had foreseen the inadequacy of her explanation, and

E

cautions that this is not the whole story (Wierzbicka, 1976, p. 362).

Donna offers a brief diversion:

35 Donna: | don't think it will happen if you do like eleven, fourteen, twenty-two.

Faye brings the discussion back on course with a ‘crucial experiment’ (Balacheff, 1988)
with the three consecutive integers:110, 111, 112 [60]:

51 Faye: 1 still get one number different.

52 Hazel: So that ... so do you ... will it always work d'you think?
53 Faye: Yeah ... | think.

54 Hazel: How can you be sure?

55 Donna: Umm

56 Faye: [laughing] Well ...

57 Hazel: Are you sure?

58 Faye: Well not really, but ...

59 Donna:  Quite yeah.

60 Faye: 1 think so. Yeah quite sure. Because it has worked because we've done
ten, eleven ... Well I've done ten, eleven, twelve, nine, ten; eleven which
are quite similar and then 1've jumped to, um, um ... a hundred and ten, a
hundred and eleven, and a hundred and twelve. It's quite a big difference.
So yeah?

61 Donna: Yeahsodol.
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Hazel probes the extent of the pupils’ confidence in the generalisation, and the basis of
their belief, and is reluctant [52] to influence their commitment to it on the mere
grounds of her own authority. Faye's intellectual honesty is very evident here. Her
crucial experiment [60] provides another (presumably weighty) confirming instance of
the generalisation [51] yet her assent to it is hedged, reluctant [53, 58]. Perhaps Donna's
hedged, but accepting, stance [59] finally prompts her to re-examine the evidence-in-
hand [60] and affirm her own conviction.

This transcript is evidence of Hazel's commitment to quasi-empirical enquiry with her
pupils, and of her persistence as she presides, as an accultured participant, over the
testing of the conjecture that b2-ac=1, probing the girls' conviction that it will hold for
all consecutive integers a, b, ¢. I have given the name 'zone of conjectural neutrality’ or
ZCN (Rowland, 1995, pp. 350) to the space between conviction and assertion. One
senses that Hazel has identified and explored a ZCN with Faye, who understands that it
is the conjecture ('it always works') which is on trial. She is free to believe or to doubt.

If it can be accepted that truth and falsity may be decided in the ZCN, then a person
may articulate a proposition without necessarily being committed to its truth; for the
proposition is on trial, not the person. Whilst mathematical conjectures are formed as
private, cognitive (perhaps inductive) acts, they are validated in public polemic of some
kind. Moreover, the learner ideally participates in the discourse since, as Balacheff
submits (1990, p. 259), children must take responsibility for the validity of their own
solutions "in order to allow the construction of meaning”. At the same time, a
conjecture is not fixed and immutable, but modifiable. This is the quasi-empiricist,
fallibilistic approach to teaching and learning.

A teacher who is functioning fallibilistically [...] establishes a classroom climate in
which an atmosphere of guessing and testing prevails, where the guesses are
subjected to severe testing on a cognitive rather than an affective level [...] where
knowledge is treated as being provisional. Because of the provisional nature of
knowledge, pupils are encouraged to confront the mathematics, their peer group
.and, where appropriate mathematically, even their teacher. (Dawson, 1991, p. 197,
emphasis added)

Not only is uncertainty an intellectually tenable position, but the assertion of uncertainty
draws the attention of the teacher to the existence of a ZCN, and thus opens up the
possibility that s/he might provide for the student some cognitive 'scaffolding' (Wood

et al., 1976) to support, and perhaps transform that state.

INTERACTIONAL STRATEGIES

The ZCN can usefully be viewed as a (metaphysical) space where a conjecture can be
located whilst it is tested (and possibly refuted or modified). The issue central to this
notion of ZCN is summarised in the question "Where are pupils' conjectures located?
Who is responsible for them?" The default position must be that a conjecture belongs to
the one who utters it. If the conjecture is asserted with conviction (better still, if it is
subsequently validated as true), then this is not an affective problem. But'if a conjecture .
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is offered tentatively, then it is better that it be located somewhere neutral before it is
tested, in order that there be some real prospect of Dawson's promise (ibid.) of "testing
on a cognitive rather than an affective level”, in defiance of the cultural norm that the
pupil is judged to be 'right' or 'wrong' rather than the 'answer’ 'true’ or 'false’; that it is
s/he who is on trial, not her/his beliefs.

This is at the heart of pupils’ communicative competence in the use of various kinds of
vague language in the assertion of conjectures, especially in the use of hedges such as
maybe, I think, about, basically, quite.

34  Faye: Because ... well, 1 don't know for certain but I think ... 'cos the numbers
" that we've done are quite close to the first ...

Such forms of linguistic ‘shielding' (Rowland, 1995) have the effect of reifyirg the ZCN
and locating the conjecture in it, thus distancing the speaker from the assertion that he
or she makes. A 'plausibility shield' such as I think, maybe, or perhaps does this in a
very direct way, because the marker of propositional attitude lies outside the statement
that follows it. Epistemic ‘approximators’ (such as approximately or about) are more
subtle: they do not require the speaker to disown her/his conjecture, but they do make it
“"almost unfalsifiable" (Sadock, 1977, p. 437). Whilst subtle, this is less than helpful
since a consequence of its vagueness is that, strictly speaking, it can neither be validated
nor modified. The conventional force, however, is clearly to present the conJecture as
fallible, possibly in need of modification.

The teacher who recognises the epistemic force of a hedged conjecture has the option of
assisting its placement in the ZCN. One way to do this might be to write it ona
chalkboard/flipchart and say something like "OK, let's take a look at this conjecture”,
possibly without reference, for arbitration or interpretation, to the one who proposed it.
Another way is to form small discussion groups which then tend to assume some
corporate ownership for the conjecture and their findings about it when reporting back
to the class. | sometimes 'return’ a conjecture, or an agreed modification of it, from the
ZCN back to its originator when the "severe testing" is over; 1 do this, for example, by
marking its changed status with reference to the conjecture as.'theorem’ (sometimes
‘lemma’) and naming it Yuko's Theorem or Tom's Theorem.

A student's conjecture may be the inductive outcome of an extended investigation, or
simply the answer to a teacher's question, such as "Is 91 a prime number?", or "How
many non-isomorphic groups are there of order 87" By default, the one who answers the
question 'owns' the answer and is subsequently right or wrong. One way of trying to
bring the answer into the ZCN before it is spoken is to pose the question as an ‘indirect
speech act' (Gordon and Lakoff, 1976) such as "Can you tell me if 91 is a prime
number". Hazel, the teacher discussed earlier, was notable for her frequent use of this
technique (Rowland, 1996b). Another, rather different, technique is to pose questions as
statements (with the tacit or explicit "Discuss"). Thus, "91 is not a prime number". Or
by attribution: "My friend says that 91 is a prime number". The conjecture then goes
straight into the ZCN; at the very worst, only the teacher (or his ‘friend’) are 'wrong' if
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the statement turns out to be false. But this technique has limitations, and cannot help
with extended enquiries "in which a conjecture is created, tested and proved, or refuted
and modified" (Dawson, ibid.).

Another affective issue in fallibilistic teaching is raised by Sixth Form College teacher
Rachel Williams (1995), in her discussion of a teaching episode with two eighteen-year-
old students who had laboured at length on a combinatorial problem. When at last one
of them, Di, identifies combinations she had previously overlooked, Rachel can restrain
herself no longer:

31 Di: [puzzied] ten, eleven, twelve, thirteen ...
32 Rachel:  That's all right.
33 Juliette: [puzzled] That's O.K?

Williams comments:

I'had to confirm that Di was correct [32], I couldn't bear the uncertainty and wanted
them to know they had got to the correct number of ways. Looking back, it would
have been better to let them sort it out.

The student is required to take risks, but the teacher may have to "bear the uncertainty”
when she judges that the student must resolve uncertainty him/herself. That is not to say

. that the teacher cannot participate in the ZCN, but her/his role may be best restricted to

light scaffolding as s/he oversees the debate.

SUMMARY

Whilst constructivism emphasises students’ coming-to-know as an outcome of reflection
on mathematical activity, it is necessary that knowledge so constructed is somehow
affirmed (or otherwise). To quote Dawson (1991, p. 195), "Learning mathematics does

" not (necessarily) mean constructing the right knowledge”. Whilst it may frequently fall

to the teacher to legitimate or deny students' constructed beliefs, such a norm presents a
somewhat sterile and authoritarian view of mathematical knowledge.

Lakatos' fallibilist philosophy offers a more dynamic paradigm for the authentication of
constructed knowledge, which initially may be accorded the status of conjecture. In a
conjecturing atmosphere, a pupil may articulate a conjecture without necessarily being
committed to its truth. As Mason (1988, p. 9) says, "... let it be the group task to
encourage those who are unsure to be the ones to speak first". Yet the testing of such a
conjecture is a carried out in "a clash of views, arguments and counter-arguments’
(Davis and Hersh, 1980, p. 346). A necessary precursor to such testing is the
willingness of students to articulate their conjectures, without fear of humiliation on
being found to be 'wrong’.

The zone of conjectural neutrality may therefore be viewed as an affectively- neutral
space where conjectures are lodged for inspection. Both the pupil and the teacher may
adopt strategies to influence the relocation of the conjecture from the pupil to the ZCN.

O
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The conjecturé is then tested, modified or rejected in the ZCN. In such a cognitive and
affective milieu, it is the proposition that is on trial, not the person. The ultimate goal,
for the fallibilistically committed teacher, would be for the class to understand that this
is the case.
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THE EXPERIENCE OF MATHEMATICS TEACHING
Human awareness as a possible object of enquiry in research in teaching
mathematics. .

Ulla Runesson
Goteborg University, Sweden

In this paper I argue that taking an experiential perspective on the teaching process
in terms of the different ways in which teachers experience mathematics teaching,
can contribute to a better understanding of the teacher and the teaching process as
well as what is learned. The point of departure is that this experience is a relation
between the subject.and the world. When something is experienced it is experienced
as something and can be described in terms of in what way the awareness of the
subject is structured. By analysing what becomes the fore of the teacher’s awareness,
i.e. what aspects of mathematics teaching they direct their awareness towards and
how this is done, it is possible identify that they open up for different dimensions of
variation in their teaching.

Introduction

Why is teaching carried out differently and what can be identified in the
teachers' teaching that might lead to a variation in what and how students learn?
Although there seems among teachers to be an agreement about for example what is
important to learn in mathematics and how mathematics is learned, their teaching can
be very different. ’

The aim of this paper is to explore how research from an experiential
perspective can contribute to an understanding of the teaching process in
mathematics, particularly in respect of differences between what is taught and how
this is done. This paper gives an account for some parts of a study which aims at
describing those intentions, explicit as well as implicit, that teachers have for their
teaching (Runesson, 1996). In order to reveal and describe the different ways
mathematics teaching can be experienced by teachers, a combination of data from
interviews with teachers and from classroom observations has been used.

Background

Due to the shift from the process - product to a cognitivistic paradigm in
research on teaching in the 1980s, there was an increasing interest in trying to
identify and understand teachers' conceptions and beliefs systems. A number of
studies in mathematics education have indicated that teachers' beliefs about
mathematics and its teaching play a significant role for their practice. Many of these
focus on the relation between teachers' beliefs and their practice. The results from
these studies look, however, different. This discrepancy has been explained in
different ways; for instance due to the research design, but mostly it has been
explained by the researcher neglecting the social context (Thompson, 1992). The
awareness of the strong influence of the social context in the classroom on teachers'
practice, has led to a changed focus in research on mathematics teaching. This
implies that the importance of social interactions within the classroom has been taken
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in consideration. Several studies have been undertaken that give account for the
student - teacher interaction in the classroom, either from linguistic (c.f. Pimm, 1987)
or sociological perspectives (c.f. Mellin-Olsen, 1987).

Recently there has been a need to broaden the sociological perspective in

research on mathematics teaching. Therefore a socio-cultural view on the

- mathematics classroom has been taken of many researchers. Inspired by constructs
from symbolic interactionism or from Lave & Wenger's social practice theory ( Lave
& Wenger, 1991), the teacher and the students are seen as participants in a culture of
using mathematics. The teacher’ s role in the mathematics teaching is seen as a
representative of the mathematical community (Yackle & Cobb, 1996) and that
mathematical meaning is jointly negotiated in the classroom.

Thus, there has been a shift from seeing the teaching and learning as something
mental to regarding this as social. From my understanding however, these different
research perspectives have something in common, since both of them are based on
the same ontological assumption. This assumption is that the subject and the object
are separated; i.e. on a dualistic ontology, since either the mind of the teacher or the
social context has been the object of study.

It has been argued however, that these (the mind and the social) must be seen
as complementary (Cobb 1994) . I argue that they must be seen as inseparable, the
"mind" and "the social” cannot be divided. Teaching - and learning- is both cognitive
and social. A teacher's intentions for example, can neither be reduced to something
"inside the head" of the teacher which she tries to realise in the classroom, nor is it
only a result of the social interaction in the classroom.

Teaching and awareness

Phenomenography as a research approach offers an alternative perspective for
understanding the teacher. Instead of studying teachers' thinking in terms of beliefs,
attention is paid to the ways teachers are aware of or experience their professional
world (Marton, 1993). Phenomenography studies empirically differing ways in which
people experience, conceive of or understand various phenomena in the world
(Marton, 1981; Marton & Booth, in press).

Experiencing should not, however, as within psychology be understood as a
mental representation or a cognitive structure, i.e. as related to the subject only.
Instead experience refers to a relation between the experiencing person (subject) and
what is being experienced (the objéct). This implies that phenomenography takes an
non-dualistic ontological point of departure since subject and object are regarded as
in-divisible. Thus there can not be a conceiving or experiencing without something
perceived or experienced. However when we experience something, it is always
experienced as something, has a meaning. But in order to assign it a meaning, it must
be experienced in a certain way; for example, it must be discerned from its context
and its parts and how these parts are related must also be discerned. From this
follows that the experience has both a structure - how something is experienced - and
a meaning - what it refers to.

How something is experienced can be described in terms of the structure of the
awareness at a certain moment. The awareness is assumed to have a figure - ground
structure, i.e. it has a structurally differentiated character. Gurwitsch (1964) makes a
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distinction of what is the object of the focal awareness, the theme, and those aspects
in which these are embedded, the thematic field. We are aware of a numerable things,
but not at the same time and in the same way. When for instance, a teacher is
teaching, she is aware of many different aspects of her teaching (the subject, the
students, physical and material frames) but she directs her awareness towards some
of these aspects and she does this in a certain way. "The aspect of the phenomenon
and the relations between them that are discerned and simultaneously present in the
individual's focal awareness define the individual's way of experiencing the
phenomenon” (Marton & Booth, in press).

Teaching in terms of teacher's awareness

From an awareness perspective, the notion "teaching"” is considered as an
intentional act aiming to establish some kind of relation between the student and the
world. This implies that the teacher wants the student to become aware of or
experience the world in a particular way. In order to make this happen, the teacher
tries to direct the awareness of the students towards some aspects of a phenomenon.
When a specific content is communicated, the learner’s and the teacher's thoughts are
coming.into contact. From that follows that the "teacher's awareness - --- has to be
interwoven equally to the threads of the learner and content” (ibid.). In line with the
underlying non-dualistic assumption, teaching thus can be seen as a meeting of
awareness through a shared object of leaming. So what the teacher focuses on and
the variation of their awareness in the teaching situation, becomes a central issue.

Research within the phenomenographic research approach has given account
for that teachers, when they talk about their teaching, direct their awareness towards
different aspects of the teaching process. Some dimensions and aspects come in the
fore, become the focus of the awareness and are thematized, whereas others are
taken-for-granted. (Alexandersson, 1994). In a study investigating the different ways
in which teachers experience and handle the content, Patrick (1992) has shown that
the way teachers experience the disciplines (physics and history), affects the way
they communicate and handle the subject matter. Patrick describes this in terms of
the teacher constructing an object of study towards which the students direct their
awareness in their learning. This implies that as the teacher focuses some aspects of
the content and the learner, she opens up for variations in some dimensions and
invariations in others. Marton & Booth (in press) use the notion "architechture of
variation" as one principle for teaching and they point out the importance of a such
variation for the leamning process .

Methods and procedure
The overall aim of the study is to reveal and to describe the object and aim as

regard students' learning in mathematics (Runesson, 1996). The point of departure for
the analysis is the structure of teachers' awareness in terms of what is focused in the
teaching process, in which dimensions a variation is opened up for and how this
variation comes into play.

" The study includes five teachers and their pupils in four different schools. Four
teachers teach in grade 7, the fifth in grade 6. The selection is done by "purposive
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sampling” (Cohen & Manion, 1986, p 103). In this case, this means that the group
that is investigated consists of teachers with varying degrees of in-service training.

The data consists of audio-recordings of lessons and two interviews with each
of the teachers. The teaching has been followed during six consecutive lessons in the
respective classes and extends over the first eight week lessons of the teaching
section rational numbers. Altogether there are 21 hours of mathematics teaching
respectively 8 hours of interviewing documented. This material has been transcribed
and typed out word by word. The analysis has consisted of repeated readings of the
very extended data set in order to identify those instances that can be considered
relevant for the investigation of the phenomenon in question, namely the different
ways in how teachers experience teaching mathematics

Some preliminary results

Due to the fact that all five are teaching the same unit of the curriculum, (four
of them even using the same textbook), it is possible to identify some aspects of the
teaching process that are independent of the content that is taught. Even though the
teachers work with the same subject content, use the same tasks or the same type of
manipulatives in their teaching, in the interaction with the students they direct the
students’ awareness towards different aspects of mathematics and mathematical
knowledge. Thereby it is possible to show that although there are many similarities in
their outer visible methods, there exists something else in addition to this that may be
of importance for what is learned. The different acts of teaching and the oral
statements from the interviews, indicate that some aspects of the teaching process
become the focus of the teacher' s awareness, i.e. they become thematized in a certain
way. The teachers thereby constitute their own, personal curriculum for the teaching
of mathematics. At present I have been able to identify three such different curricula.

In order to illuminate that the teachers' awareness can be directed towards
different aspects and that the awareness can be structured differently, we will take a
closer look at two of the teachers in the study.

Their teaching is similar in one respect; in the textbook that is used, there is a
unit about the relation between different aspects of rational numbers. It aims at
pointing out that for example 6/3 is a fraction, i.e. part of a wholeness, as well as an
operation (division).

Case 1, Ms Irvine
Ms Irvine starts the lesson by pointing to.a pie-chart on the board. She uses this as a
representation, and asks the students:

T: How would you express this?..How would you write what you can see on the black board here?
S1: Six thirds or two.
T: Yes... that equals two, since if you put the parts together, it is exactly two. OK. I'll write that.

[]
3 or 2
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T: But if I'd asked you about this a couple of weeks ago, what I had written if I had written like this,
six fraction line three, you would not have said six thirds, because then we were talking about
something quite different..."divided by three", that's what you would have said...but is it the same?
S (mumbling): yes, no

 T: Well, it is said differently,... but is it the same? Yes it is. So six divided by three is the sa-...,gives

you the same result as six thirds.

six thirds

3
six divided by three

T: I can show you, if I'd use a picture, I'll do like this: Let's take six pies or what ever, and divide
them by three. (Draws six pies on the black board) What am I doing? Well I can divide them into
three. Now you can see...if I divide this by three it equals two. So it is the same, but it is said
differently. So if I would say: "20 divided by 4" but it doesn't matter what I say 'cause it equals five
anyway. But you should know they are actually two different things but the result will be the same.

In this excerpt we find that the teacher directs her awareness towards one
aspect at the time. She starts out with the part-whole aspect by using a pie chart
representation. The students have to give an account for how this can be represented
mathematically and expressed orally. Then the teacher concludes: six thirds equals
two. Subsequently the teacher focuses upon the division aspect. She reminds the
students about their previous experience of division. Previously mathematical
expressions with fraction lines have been interpreted as division. Finally she uses a
representation for six divided by three. This and the pie chart represent two different
aspects of the fraction, but both equals the same integer, " it is the same”. -

A Case 2, Mr Turner
Mr Turner also uses a representation. On the blackboard there is a picture of 12
apples (Example 1). .

T: All right. I'm going to give you two questions to think about. Just think! Don't say the answer out
loud yet. I think you'll find them easy. OK, here's number one: Twelve apples that you and two of
your friends are going to share equally. Now I want you to consider; how can this be written
mathematically? And what would that turn out to be?....OK. Do you remember number one now?!
All right...number two.

On the black board there is a picture of a bow] with pieces of apples in it (Example 2).

T: This is a bowl...there are pieces of apples in it. Each apple is divided into three parts with the
same size. What do we call such parts? You can answer that question now if you want to.
S1: Thirds :
T: Right. Well do you remember example number one? How many apples did you get there? OK
I'll go on asking. Let's suppose you take pieces of apples from the bowl, just as many so you get
exactly as much as you had ...there (example 1). How many pieces of apples do you have to take?
In order to get just as much? ...OK. I want you to write that down,...how could this be written?
Well, let's go back to question number one again, I asked you how you would write that
mathematically and what that turned out to be. How would you do that Erica?
.S2: Twelve divided by three.
T: Twelve divided by three. 12

3
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That's what you do, isn't it? You've got twelve apples and you divide them by three, that equa-
...four. So you'll get four apples. OK, the next one. I'd like to know, how many thirds did you have
to take in order to get as much apple as you got there? David?
S3: Twelve.
T: Twelve, what?
S3: Thirds.
T: Twelve thirds. How do we write twelve thirds mathematically ? Caroline?
S4: Twelve and then such a... line
T: Such a line, yes a fraction line. Do you follow? Well how many pieces am I going to draw now?
Twelve, yes! Now...I want you to look at number one and on number two. Can you find any
similarities?...Mm...If so, what is similar?...What is similar...?
S5: You have divided by three.
T: Yes. In the same way, Here you can read 12 fraction line 3. Here you can read 12 fraction line 3.
But what would you say in this case (points to number one) would you say twelve thirds
there?...Susan?
S6: No, twelve divided by three.
T: Twelve divided by three... and what about this (number two)...But if you'd take these 12 thirds
and stick them together. How many apples would you get then. Dan?
S7: Four.
T: Why four?... This is hard. Nobody is raising his hand now!?...Here it comes, Andrew:
S8: 'cause there are four in a whole.
T: so in order to get a whole....so 12 thirds, that's also four. Thus, you can say...
(writes on the blackboard) 12 =

3 3

that's the same as 12 thirds.....you get the same result. Listen. 12 divided by 3 and 12 thirds, the
result is the same. So no matter if you take 12 apples and divide them or if you take 12 thirds, you'll
get the same result. OK. ’

In this case, the teacher directs the awareness of the students towards the two
_aspects of the fraction simultaneously. Just as in case 1, the awareness is directed first
towards the division aspect and the to the part-whole aspect, but without interuption

of letting the students give the answer to example 1. Instead the teacher continues
directly with example 2. By not changing the focus of the students’ awareness, this is
kept directed towards something whole, i.e. a relation. The way in which the teacher
acts, indicates that his awareness has a character of something whole, since several
aspects of the fraction is focused simultaneously.

Conclusions ,

By taking the teacher awareness as an object for analysing my data, it has been-
possible to identify the differences.of the focal awareness of the teachers. For Ms
Irvine the mathematical problem and its solution becomes the fore in her awareness.
Her intention is to teach the students how to solve different kinds of mathematical
problems. As regards Mr Turner, it is not the problem as such that becomes the focus
of his awareness but the structure and the meaning of mathematics. His intention is
that the students by understanding the structure of mathematics will be able to solve
mathematical problems. Thus, the teachers have different goals as regards the
students’ learning in mathematics. It is also possible to identify the structure of their
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awareness. Whereas Ms Irvine's awareness has a sequential structure - the aspects are
focused step by step - Mr Tumer focuses these aspects simultaneously.

It has also been found that what becomes the focus of the teacher's awareness,
becomes the focus of the students' too. For example; the students in Ms Irvine 's class
are very eager to come up with the right answers, whereas in Mr Tumer 's class they
are eager to give arguments for their solution.

By focusing different aspects of the teaching process, the teacher opens up for
different dimensions of variation in the classroom. This has implications for what is
leamned. The importance of exposing students to a variation when learning to solve
mathematical problems, has been reported by Ahlberg (1992). So there are reasons to
believe that which dimensions of variation that are opened up for is of importance for
students’ learning in mathematics.

Final reflections

In what way can human awareness as an object of study contribute to our
understanding of mathematics teaching? From my point of view the main
contribution is to make variations within the social context visible; for instance
variation among teachers in respect to those aspects that are less obvious than the
outer methods for instance whether group work, manipulatives etc. are used or not.
This implies that the variations in respect to how the subject matter is handled can be
revealed. Which aspects of the teaching process are varied, which become invariant?
In which aspects of the teaching process are dimensions of variations opened up for?
What is the nature of that variation and what importance has this for students’
learning? These are some central questions, important for understanding both the
teacher, the student and the teaching process, that can be answered by taking the
human awareness as an object of study.
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CALCULATOR USE BY UPPER-PRIMARY PUPILS
TACKLING A REALISTIC NUMBER PROBLEM

Kenneth Ruthven, University of Cambridge

This paper analyses how a structured sample of pupils in the last year of English
primary education tackled a realistic number problem, focusing on their use of a
calculator. Use of the machine allowed a small number of pupils to work with the
representations and approaches underlying the solution strategies of Multiplication
Trial, Division Trial and Repeated Subtraction, and the sense-making strategy of
Clarificatory Division. It" also enabled pupils using the predominant solution
strategy of Direct Division to execute a computation for which they had no other
method. But here, some pupils chose not to use the calculator, and others failed at
the stage either of formulating, executing or interpreting the division. Response
patterns were no different in schools long offering a ‘calculator aware’ curriculum.

The introduction of information technology into education has been accompanied
by suggestions that computational tools need not simply be assimilated to traditional
patterns of thought, but are capable of provoking fundamental changes. Pea (1985),
for example, has made the theoretical distinction, further developed by Dorfler
(1993), between a tool as ‘cognitive amplifier’ on the one hand and ‘cognitive
reorganiser’ on the other. The calculator has a relatively long history of school use,
and remains the computational tool most generally and readily available to school
pupils. Moreover, in many countries, school mathematics curricula are being
reformed in ways which cast the calculator as both amplifier and reorganiser.

In England, the influence of the Calculator Aware Number (CAN) project (Shuard
et al., 1991) can be seen in National Curriculum requirements that upper primary
pupils should be “given opportunities to use calculators..as tools for exploring
number structure and to enable work with realistic data” and that “pupils should, be
taught to understand and use the features of a basic calculator, interpreting the
display in the context of a problem, including rounding and remainders”. Equally,
the curriculum reflects the CAN emphasis on informal mental calculation, requiring
that “pupils should be taught to.. extend mental methods jof computation] to develop
a range of non-calculator methods..progressing to methods for multiplication and
division of up to three-digit by two-digit whole numbers”; to “extend methods of
computation to include..all four operations with decimals..using a calculator where
appropriate”; and to “gain a sense of the size of a solution, and estimate and
approximate solutions to problems” (Department for Education, 1995, 7-8)1.

With the notable exception of the work of Groves (1993, 1994), there has been
little systematic research into the ways in which pupils make use of calculators in
the process of tackling problems within a ‘calculator aware’ number curriculum.

This paper reports some work in progress as part of ongoing research? into the
part played by the calculator in children’s numerical learning and thinking. The

1 Reference is to this version as it provides a more succinct synopsis of material also in earlier ones.

2 The financial support provided for the Calculator as a Cognitive Tool project by the Economic and
Social Research Council of the United Kingdom under research award R000221465 is gratefully
acknowledged, as is the contribution of my project collaborators, Di Chaplin and Laurie Rousham.
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research has two components. A macro-study is examining the long-term impact of
approaches to number in the primary school on pupils’ attainment and attitude. A
micro-study is analysing how pupils tackled realistic number problems, focusing on
their use (and non-use) of a calculator in doing so.

The research focuses on the mathematical experiences, attitudes and achievements
of a cohort of pupils aged 10/11 who entered reception class during the 1989/90
school year and had progressed to Y6, the final year of primary education, in the
1995/96 year. Data was gathered in six neighbouring primary schools, all covering
the full primary phase from R to Y6. Three of these schools had participated in the
original CAN project between 1986 and 1989. More recently, the teaching of
mathematics in all six schools had been influenced by the requirements of the
National Curriculum and its assessment, introduced from 1989 onwards.

The situation studied here differs, then, in two important respects from that
researched by Groves and her colleagues. First, the. pupils are rather older. Perhaps
more significant, their mathematics learning has taken place under less propitious -
and more typical- conditions than those of a special development project, although
many of the teachers involved had previously participated in such a project.

This paper reports one element of the micro-study involving a structured
subsample of pupils. The sampling frame incorporated 80 cells: defined by school
class (5 in post-CAN schools, 5 in non-CAN); sex; number concept attainment,
dichotomised as Above- or Below-average on a 30-item scale (0=0.92) from a
written test; and attitude to making use of the calculator, dichotomised as Amenable
or Reluctant relative to the neutral position on a 4-item scale (a=0.71) from a
written questionnaire (with three-quarters of pupils falling to the Reluctant side).
Sampling was restricted to pupils who had remained in the same school throcughout
their primary education; and to those between the tenth and ninetieth, percentiles of
attainment, so as to exclude pupils of exceptionally high or low attainment. One
eligible pupil was chosen from each non-empty cell, by random selection where
necessary, to produce an achieved sample (after 5 recording failures) of 56 pupils.

Each pupil took part in an individual interview during which they were asked to
tackle a range of number problems. The videotaped interviews were conducted by
an experienced advisory teacher for primary mathematics, and held in whatever
private space was available in each school. Interviewer and pupil sat together at a
table on which pen, paper and calculator were available. At the start of the
interview, pupils were told that they could work out the problems however they
liked; using their head, pen and paper, or calculator, or a mixture of them. They
were asked to tell the interviewer when they thought they had an answer and how
they had worked it out. At the start of each item, a large-type version of the
problem, printed on a raised card, was placed on the table and read to the pupil.
The interview protocol specified how pupils should be probed when a solution was
given (to elicit evidence of method), or after a long period of silence (to offer
encouragement and elicit evidence of. thinking about method).

This problem was the fifth to be tackled: 313 people are going on a coach Irip.
Each coach can carry up 1o 42 passengers. How many coaches will be needed? How
many spare places will be left on the coaches? 1t is a variant of an item used by
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Foxman et al. (1991, 3-23) and resembles one set in a recent national test at this
level (School Curriculum and  Assessment Authority, 1995, item 13a). [t matches
the curriculum goal that “pupils should be taught to understand multiplication as
repeated addition, and division as sharing and repeated subtraction..and recognise
situations to which the operations apply” (Department for Education, 1995, 8).

From the videotape of the interview and any records made by the pupil during it,
pupils actions and accounts were analysed in terms of the succession of strategic
moves as they related to finding the number of coaches (with only one pupil
formulating a spare places conjecture first). For example, the response recorded in
Figure 1, was analysed into the 4 moves shown as starting at (0-01), (1-10), (1-56)
and (2-40); the first 3 coded in a way which will be explained, and the last move
uncoded because it does not relate to finding the number of coaches. This may, of
course, be an incomplete record of the pupil’s strategic thinking. However, it
comprises all the moves which reached the point of being implemented through
written recording or use of the calculator, and it also plausibly indicates that she
engaged in no other sustained strategic move. Moves conducted wholly mentally are
potentially most problematic. Some may have gone unrecorded, although a solution,
abandonment or lengthy pause was always probed. The records may, then, under
present mental moves, particularly where they proved fruitless or did not involve
recording intermediate results. Across the sample, however, the records are likely
to provide an indication of the types of mental strategic move used by pupils.

The strategic moves were classified in terms of the scheme shown in Table 1. Each
move is characterised in terms of a computational procedure, its referents and
intent. The coding of each move had to be inferred from the way that the pupil
reported, computed and interpreted it. Direct Division, for example, might be
reported as "313 divided by 42", or simply evidenced by the keying or writing of
that computation. Often, the form of the computation was critical in classifying a
move, since a report such as "You need to know how many 42s there are in 313"
could accompany Direct division, Direct Multiplication, Repeated Addition and
Accelerated Addition. This shared form of words brings out a common underlying
representation of the problem across these different strategic moves. Equally,
however, computations of superficially similar form, could have different referents
and intent, as in the distinction between Direct, Trial and Clarificatory Division.

The categories from Direct Division through to Repeated Subtraction represent
the well-founded strategic moves which were observed. The next two categories
cover the misconceived moves displayed by pupils. Then, Clarificatory Division is
linked to making sense of the result of calculator division. Finally, a move in which
a pupil repeatedly multiplied in search of a factor of 313 is classed as Other Move.

Each pupil’s record was coded as a sequence of strategic moves, and each move in
terms of the primary mode of computation employed. Direct Division produced the
greatest range. When pupils reported a mental strategy, this was classed as Mental
with Recording if they recorded intermediate results; Mental with Calculator if they
used the machine for subsidiary calculations; otherwise, Wholly Mental. If pupils wrote
the division out in column format this was Written Column; if they keyed it,
Calculator. In other moves, however, the Calculator coding could subsume a degree
of subsidiary mental computation (such as maintainingatally or assessinga difference).

o R 4-98
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Figure 1: Record of one pupil’s work on

(0-01) DD/W/-
Writes 42)313

(0-27) }
Scores out 4 !
(0-36), W
Writes in 15 \3

then crosses out

(0-40)

writes / 3{3
(0-56) 8

Crosses out

(0-58)

Inter: “How are you thinking
about it?”

(1-10)

Pupil:“Can 1 use the
calculator?”
Inter:“™Mmm.”

DD/C/SC

Keys 313+42=7.452380952

(1-32)

Inter:“What have you got?”
Pupil: “Seven point four five
two three eight oh nine five
two.”

Inter: “ Any good?”

Pupil: “No”

Interviewer: “No?”

Pupil: “ Well you'd probably

Pupil:“I'm trying to work out getseven coaches butyou'd
how many forty-twos in three have some left.”
hundred and thirteen but | do- Inter: “How are you going to

~ n’t know how many there are.”

sort it out?”

the coach problem

(1-56) DM/W/SE
Writes 7
(2-16)
Writes 42 r
Scores out 7 Ll' Q2
Writes new 7 I
Writes 294 Iu
(2-40) -/ /-
Writes:

Ao

R Al

(3-02) O |7

Pupil: “Nineteen spare seats.”
Inter:“So there would be
what.. seven..”

Pupil: “Seven coaches and
nineteen spare seats.”

Table 1: Types of strategic move and their characterisation’

Strategic move
Direct Division

Direct Multiplication
Trial Multiplication
Trial Division
Repeated Addition

Accelerated Addition
Rounded Addition
Repeated Subtraction

Misconceived Addition
Misconceived Multiplication
Clarificatory Division
Other Move

O
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Characterisation

Division of size-of-group (313) by capacity-of-coach (42)

to find number-of-coaches

Single multiplication of capacity-of-coach (42) by conjectured

number-of-coaches

Repeated multiplication of capacity-of-coach (42) by
conjectured number-of-coaches to match size-of-group (313)

Repeated division of size-of-group (313) by conjectured
number-of-coaches to match capacity-of-coach (42)

Repeated addition of capacity-of-coach (42) to match
size-of-group (313), enumerating to find number-of-coaches

Addition process accelerated through use of doubling
Addition process using rounded capacity-of-coach (40)

Subtracting capacity-of-coach (42) repeatedly from
size-of-group (313), enumerating to find number-of-coaches

Adding capacity-of-coach (42) to size-of-group (313)
Multiplying capacity-of-coach (42) by size-of-group (313)
Division of 313 to clarify decimal answer i

Other strategic move

Gk

107

3.



Table 2: Number of pupils indicating use of specific strategic
moves, and the mode(s) of calculation employed
Strategic move Pupils ----- Mode(s) of computation employed-----
using Calculator Written Mental + Mental + Wholly
column recording calculator mental

Direct Division 36* 27 1 1 2 : 3
Direct Multiplication 4 3 1

Trial Multiplication 3 3

Trial Division 2 2

Repeated Addition 15 ° 4 1 7 3
Accelerated Addition 9 1 2 2 4
Rounded Addition 3 1 2
Repeated Subtraction 2 2

Misconceived Addition 2 2

Misconceived Multiplication 7* 6 1 1
Clarificatory Division 2 2

Other 1 1

None 2

All pupils 56* 34 14 n 2 12

*Row total of mode frequencies is greater because pupils made several moves using different modes

Table 3: Number of pupils successfuliy computing
and interpreting specific strategic moves

Strategic move Pupils Of whom Of whom
using successfully successfully
computing intgrpreting
Direct Division (C) 27 19 0
Direct Division (NC) 15 0 i
Direct Multiplication (C) 3 3 0
Direct Multiplication (NC) 1 1 0
Trial Multiptication (C) 3 3 1
Trial Division (C) 2 2 1
Repeated Addition (C) 4 0 /
Repeated Addition (NC) 1 1 1
Accelerated Addition (C) 1 0 /
Accelerated Addition (NC) 8 3 2
Rounded Addition (NC) 3 2 0
Repeated Subtraction (C) 2 0 /
No well-founded move 3 / /
4 - 100
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Of the 56 pupils studied, 53 displayed at least one well-founded strategic move; |
produced only misconceived moves; and 2 were unable to suggest any move at all.
Table 2 indicates the number of pupils reporting or displaying each type of
strategic move, and the modes of computation employed. From this it is clear that
the most common moves were based on direct division (used by 36 pupils) or one
of the forms of cumulative addition (used by 24 pupils, some trying more than
one). Much rarer were moves based on trial multiplication (3) or trial division (2)
which appear to depend on calculator use. These issues will be developed later.

Each well-founded strategic move was also classified in relation to two levels of
success. Where the relevant computation was successfully executed the move was
classed as Successfully Computed; if the result was successfully interpreted in terms
of the problem, this became Successfully Interpreted. In the case of Direct Division
by Calculator, for example: keying 42+313= (misformulation) or 3313+42=
(miskeying) achieved no level; correctly keying to produce 7.452380952 but
reporting "It doesn't really tell you the answer" (non-interpretation) or inferring
that 7 coaches were needed (mis-interpretation) achieved the first level; and keying
a correct result and interpreting it as indicating 8 coaches, reached the second level.

Table 3 indicates the highest level of success achieved by the pupils employing
each strategy, differentiated by calculator and non-calculator mode. Overall, 5
pupils completed the problem successfully. On Direct Division, no pupil using a
non-calculator mode computed successfully; and while the majority of those using a
calculator computed successfully, none interpreted successfully. All pupils adopting
either form of trialling computed successfully by calculator, some interpreting
successfully. Whether executed by calculator or not, the various forms of addition
were rarely computed successfully; but there was then some successful
interpretation. The different move types will now be examined in detail, starting
with Direct Division, reported by 36 pupils, and the first move for 32 of them.

Of the pupils who tackled Direct Division in a mental or written mode (15 pupils),
the majority (11/15) got little further than stating the calculation or writing it down
(in one case reversing 42 and 313) and carrying out some tentative calculations,
often concluding their deliberations with a comment such as "I'm not sure how to
do it" or "I've forgotten how to do it". One of these pupils had already used the
calculator to tackle this computation. Not all the remaining pupils proceeded to use
the calculator (only 5 did so); others abandoned the problem at this stage (2) or
switched to another strategy (3). The minority (4/15) who persisted with Direct
Division in a non-calculator mode all conjured an answer out of some variation on
column methods. One pupil, for example, started, in effect, by dividing 300 by 2 to
give an answer of 150 coaches, commenting "It’s probably wrong"; she then
proceeded to improvise a more elaborate malgorithm, based on adding the results
of 30040 and 132 to give 14, with these computations executed on the calculator.

Amongst the pupils who tackled Direct Division with the calculator (27 pupils), the
majority (19/27) computed successfully at the first attempt. Many seemed to find the
resulting 7.452380952 surprising: comments ranged from"Too big a number" through
“It's too long" to "That don't share equally”. This breakdown of ‘exactness’ evoked
reactions apparently intended to restore its order or affirm its loss: rekeying the
calculation (1); adopting awritten method (1); varying the calculation by reversing it
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t042+313(1),0rchanging operation to produce a Misconceived Multiplication (3)or
Misconceived Addition (1); proceeding to Trial Division in the hope of finding an exact
relationship involving 313 and 42 (1); or carrying out Clarificatory Division to see

if dividing 313 by another number looking like 42 would produce a similarly

‘inexact’ result (2). Another type of response -sometimes following the previous

one- was to seek to use the result: by (mis)interpreting it as implying a solution of 7

coaches (6), often taking the next digit to signal 4 spare places; or by carrying an_
estimate forward into a Direct Multiplication (3) or Trial Multiplication (2) move.

Amongst those who were unsuccessful in executing Direct Division with the
calculator at their first attempt- (8/27), one miskeyed, but most reversed the
computation (7). Again, responses included varying the calculation by reversing it
to a (well-formulated) Direct Division (1) or a Misconceived Multiplication (1); or
interpreting 0.134185303 as 13 coaches(2) or 134 coaches(2).

All the pupils employing Direct Multiplication (4 pupils) had already used Direct
Division. Most carried forward 7, then misinterpreted it in the standard way (3).

Equally, 4 of the 6 pupils using Misconceived Multiplication did so in response to
the decimal result of Direct Division. Nonetheless, to adopt this variation of the
division calculation there clearly had to be some degree of misconception. One
pupil volunteered: "We were doing yesterday that times and divide is the same
thing. If you do it the other way round you get the same answer". '

Trialling, too, usually followed on from Direct Division, and was consistently
associated with use of the calculator. The two pupils who came to Trial -
Multiplication from Direct Division both computed successfully but one succumbed
to the standard misinterpretation, while the other switched strategy. The last pupil,
however, had adopted Trial Multiplication from the outset, following a clearly
formulated trial strategy which involved testing 12, 10 and 8 on the calculator and
then mentally calculating the difference between 336 and 313 to find the number of
spare places and confirm that it was sufficiently small. Similarly, the fully
successful use of Trial Division was by a pupil who followed a trial strategy from

the start, testing 5, 7 and 8, to see which number of coaches would give just fewer °

than 42 passengers per coach -a rather unusual problem representation. The second
user came from Direct Division with a rather different conception and intention,
testing 8 and 9 in the hope that they would divide 313 to give exactly 42.

Now to the various forms of cumulative addition, used by 24 pupils, and the first
reported move for 17. In mental mode, the difficulty of Repeated Addition lies in
computing and retaining both running total and count. Of those computing mentally
(10 pupils) some abandoned before completing (3) and others miscomputed (6). The
only wholly successful pupil recorded running totals in a column, and then counted
them. She was observed to tap her cheek rhythmically, and reported that at each
stage she first added 2 then added four 10s. The one pupil using the written mode
«calculated the additions correctly but then miscounted them. Most of those who used
a calculator (4 pupils) keyed successive +42 operations, either lapsing in the mental
count (2), or miskeying (1); the other pupil had the idea of setting the calculator
constant, but misformulated this as multiplication by 42.

Of those pupils who used Accelerated Addition in written or mental mode 1t
pupils), the majority either abandoned (1) or miscomputed (4). Of the minority who
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successfully computed, one made the standard misinterpretation, but two succeeded.
The pupil who used the calculator, keyed 42x2=84, 84x2=168 and 168x2=336, then
mentally (mis)calculated 33 spare places, and was unsure about the number of coaches.

Rounded Addition was.used by 3 pupils, all calculating mentaily. One
miscalculated and then abandoned; the others reached a total of 320 and a count of
8, interpreting this as 8 coaches and 7 spare places, without compensating. A
pragmatic decision was made to code this response as successfully computed but

-misinterpreted. It is worth noting that an alternative to compensation would have

E
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been to carry the estimate forward to another strategy, but no pupil reported this.

‘On a related point, nor was there any evidence of pupils estimating from the

approximate proportions 40:320, or 40:300, or from the corresponding divisions.

Both cases of Repeated Subtraction were built on an unusual problem
representation focusing on the number of people still to be placed. As a mental
strategy, the use of subtraction rather than addition, and the resulting combination
of a falling total with a rising count, make it challenging. Both attempts made use of
the calculator: one failed through miscounting, the other through miskeying.

In what ways, then, could the calculator be said to be acting as a cognitive
reorganiser or amplifier for these pupils? As a reorganiser, use of the machine .
enabled pupils to work with the unusual problem representations underlying Trial
Division and Repeated Subtraction. Equally it made the iterative solution strategies
of Multiplication Trial and Division Trial available, and the sense-making strategy
of Clarificatory Division. But we should also note their limited incidence. Finally,
although some pupils used the calculator to form a distributed system combining
machine and mental computation for Repeated Addition and Subtraction, they did
not do so effectively. As an amplifier, the calculator offered pupils tackling Direct
Division a means of executing a computation for which they had no other method.
But this was to little effect for those choosing not to use it, for those
misformulating the division or misexecuting it, or for those thrown by the decimal
result. This brings us to the nub of the issue. Effective use of the calculator requires
development both of confidence and competence in its operation, and of
mathematical concepts underpinning its use.

Finally, closer examination revealed very similar patterns of response in post-
CAN and non-CAN schools, probably reflecting the convergence in their
approaches to number in response to the introduction of the National Curriculum.
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SPATIAL ABILITIES, VAN HIELE LEVELS, & LANGUAGE USE IN
THREE DIMENSIONAL GEOMETRY

Silvia Saads and Gary Davis
The University of Southampton, United Kingdom

We investigate the van Hiele levels in three-dimensional geometry, and the spatial
abilities, of a group of pre-service secondary teachers. A small subgroup of these
teachers was studied for the use of language in the identification of the properties of
polyhedra. Whilst the language generally reflects the van Hiele levels there are ex-
amples of discussion at a higher level than the written tests indicate.

Introduction

How do students of geometry come to understand the properties of 3-dimensional ob-
Jects such as polyhedra? The van Hieles developed a theory of levels of understanding
in Euclidean (2-dimensional, flat) geometry (van Hiele 1986; Hoffer, A. 1983, Fuys et
al 1988, Senk. S. 1989; Burger and Shaughnessy; Mayberry 1983; Treffers, 1978).
Gutierrez and colleagues have applied this theory to the understanding of three-
dimensional geometry (Gutierrez et al, 1991, 1996). However, also associated with
geometric understanding is-a developing sense of general spatial perception (Del
Grande, 1987; Bishop, 1980, 1983). Del Grande (1987) considered activities that
might enhance spatial abilities, based on work of Frostig and Horne (1964) and Hoffer
(1977). He proposed seven spatial abilities that seemed to be of greatest relevance in
academic development in geometry. Bishop (1980, 1983) also pointed out the impor-
tance of spatial abilities in mathematics education. The object of this study was two-
fold. The first was to develop an instrument to assess van Hiele levels and spatial
abilities. The second was to relate students' questioning and the use of language to
their observed van Hiele levels and Del Grande’s spatial perception abilities.

Method

We gave 25 students enrolled in secondary initial teacher training (PGCE) a written
test designed to estimate their van Hiele levels and spatial perception. 12 of these stu-
dents were from the year 1995-1996 and the other 13 were in the year 1996-1997.
From the group of 25 PGCE students, 7 from the 1996-1997 group volunteered to par-
ticipate in group discussions on identification of 3-dimensional shapes (all, but one,
were polyhedra). In the group discussions one student had a 3-dimensional shape out
of sight of the others, whose task was to identify it by asking questions. We video-
taped each group session for analysis.

The preparation of this paper was supported by grants number 201535/93 from Brazilian Ministry of
Education CNPq. We thank all the students who participated in this study.
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Test questions

We designed the test to determine van Hiele levels of achievement in three-
dimensional geometry understanding, and to access Del Grande’s spatial perception
categories. Each of the seven questions contained various sub-questions. The arrange-
ment of the questions in relation to the van Hiele levels and the Del Grande categories
was as follows:

Level 1 Level 2 Level 3 Level 4
Perceptual Constancy Question 1 Question 7
Figure Ground Perception Question 2 Question 6
Position in Space Perception Question 3
Visual Discrimination Question 4
Spatial Relationships Question 5

Table | - Questions corresponding to van Hiele levels and Del Grande's categories

Sample questions

Table 1 above shows, for example, that Question 3 is linked with van Hiele level two
and Del Grande position-in-space perception. In this question we requested students to
distinguish figures of different three-dimensional shapes and recognise the equivalence
of different views to successfully group them. The question also asked for a list of
properties for each group.

Question 7 is linked with van Hiele level three and Del Grande perceptual constancy

of shape and size. The objects drawn consisted of representations of three dimensional

shapes formed from cubical blocks. These blocks were attached face to face forming

rigid three dimensional structures. The representation of each pair of identical three

dimensional objects differed only by rotation. Students had to shade the right hand
_ faces of objects and to match them in pairs.

Reliability of the test

Table 2 below shows the Kuder-Richardson inter-term reliability for each question.
Question 1 had zero variance of scores, and we removed question 5 from the test
scores, and the overall calculation of reliability, due to its very low reliability coeffi-
cient (considerably less than 0.5).

Question: 1 2 3 4 5 6 7 overall
Reliability: 0.64 [087 (066 [<<0.5([063 |091 |0.76

Table 2 - Kuder-Richardson inter-term reliability coefficients

General results. from the test

Gutierrez et al (1991) proposed a coding system to assign students to a specific degree
of acquisition within each van Hiele level. We used a modification of that coding sys-
tem to construct Table 3, below. For three of the students in the study we were not

o
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able to assign a clear van Hiele level. The frequency distribution of students according
to the degree of acquisition and van Hiele levels shows the hierarchical structure of the
latter.

. \ttaine
Codes: |Blank | Inappropriate |Insufficient | Adequate | Precise
Level | 5 20
Level 2 | - 3 11 11
Level 3 |2 5 10 8
Level 4 15 8 2
Level 5

Table 3 - Number of students according to degree of acquisition of van Hiele levels

Codes: : Blank |Inappropriate |Insufficient | Adequate | Precise
Perceptual Constancy |2 1 3 3 16
Figure Ground ' 4 2 17 2
Position in Space ] 24
Visual Discrimination 8 4 7 6
Spatial Relationships 3 2 9 11

Table 5 - Number of students according to degree of acquisition of Del Grande per-
ceptual abilities. Note that the Del Grande Spatial Perception categories are not hi-
erarchical.

Sample results from the discussion groups

This part of the experiment was carried out using concrete three dimensional shapes.
Pen and paper were available to the students who were encouraged to draw the shapes
during their description. After considering each object, the students stopped only when
they believed they had successfully completed their oral description. Note that we pre-
sented no constraints to the students regarding which words or technical terms they
could use. Throughout the discussion the student with the shape provided information,
on request, to the rest of the group. The table below shows the van Hiele levels and
degrees of acquisition of spatial abilities of the 7 students who participated in the dis-
cussion groups. Note that although student B is assigned level 2 in transition to level 3,
in fact in was not possible for us to assign a clear van Hiele level since there was not
evidence of a clear attainment of level 2. Similarly, student F is assigned level 1 in
transition to level 2, but this student exhibited evidence of level 3 thought.
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Van
Hiele
, level

Student A | 324 | Precise Adequate Precise Precise Precise
Student B | 2=>3 | Precise Adequate Insufficient | Insufficient Inappropnate
StudentC |4 . | Precise . | Adequate Precise Precise Precise
Student D | 3 Adequate | Insufficient | Precise Adequate Precise
Student F | 1=>2 | Precise Inappropriate | Precise Precise Precise
Student K | 2 Precise Adequate Precise Inappropriate Inappropniate
StudentR |3 Precise .| Adequate Precise Adequate Adequate

Table 6: the van Hiele levels and degree of acquisition of spatial abilities on the
written test, of the seven students engaged in oral discussion

Transcript of discussion group |

Student K (level 2) manipulated a shape behind a screen, out of sight of students A
(level 34 ), D (level 3) and C (level 4). Student A begins with a quantitative and
relevant question, but uses the word “sides” rather than “faces™:

A: How many sides has the shape got?
K: Six.
Student D checks that “sides” means “faces” (2-dimensional polygonal boundaries):

D: Is that six faces?

K: Yes, six faces, sorry. .
C: Are they all the same?
K: Yeah.

Now student A uses “sides” to mean “1-dimensional simplicial boundary”

A: How many sides does each face have?
K: Four
A: So is each face a square?
K: No
Student A then asks for metric information:

A: Are all the angles of each of the faces right angles?
K: No
and student C, apparently not aware, or forgetting, that the faces have 4 edges, asks:
C: Is each face a triangle?
K: No
A: What, with four sides?
General laughter.
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Again student A asks for pertinent information, leading her to identify the shape in her
own mind:

A: Are opposite sides of the face, ahh .. parallel?
K: Yes, and they are all equal. I would say.

A: So, it’s a rhombus? ’

K: Yes.

D: (Inaudible)

C: (To D) Each face is a rhombus.

However, further questioning by student A reveals that the identification of the shape
as a “rhombus” is still somewhat confused:

A: Would the shape be as if you had a cube, and then you tilted it one way?

K: Mmm, yeah.. if I think about it I know what you mean.

Teacher: ... he said to elaborate on something like “tilt” for example, ... if she
wanted to. ,

K: What do you mean by tilt? Do you mean sort of almost pushed to one side?

Student A explains that if one puts a cube on the ground, such that it keeps its face on
the ground in a fixed position, and in addition pushes the top, the required shape would
be formed. This student did not take into account that just the lateral faces of a cube
would change from a square to a rhombus, with the top and bottom remaining the same
shape: a'square. This was clear to student C, who was functioning at level 4. She dem-
onstrated an ability to understand the logic of the situation:

A: If you keep .. if you put it on the ground, if you put a sq.. a cube on the
ground, and you kept the face that’s on the ground absolutely in position, and
then pushed from the top .... so that the whole thing sort of went out shape. Just
skewed over. Does that make any sense? :

C: No,... the faces at the bottom will still be a square, won’t they?

D: Kind of like you had a cube but just sheared to one side.

K: Yes. That’s what I was trying to say.

Student C initiates a discussion on parallelism of opposite faces, which leads the group
to agree that they have identified the object:

C: Are, ... are opposite faces parallel?

A: Does it have 3 pairs of opposite parallel faces?

A: Top and bottom, are they parallel?

K: Yes, If you were to look at it umm.. head on you could almost have a, well
you havea ... diamond shape. ... '

Others: yeah, yeah.

K: That’s right to say diamond shape, isn’t it?

A: 1t’s akite, yeah? Like a kite.

K: Yes, ....... 8 vertices.

A: Don’t get technical on me!

[
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Transcript of discussion group 2

Student F (no assigned level: level 12 generally, but shows evidence of level 3
thought) manipulated a shape behind a screen, out of sight of students B (no assigned
level: level 23, but lacks some aspects of level 2 thought) and R (level 3).

Student B begins with a question he asked several times in group discussions. This
question, which is more or less subjective, does not focus on properties of the object,
and is in keeping with B’s lacking some aspects of level 2 thought:

B: Is it a complex object?
F: No.

Nowhere had we told the students about the flatness or otherwise of the faces of the
objects, so R’s next question is quite reasonable.

R: Is it made up of flat surfaces or curved ones?
F: Flat.

Student B asks a relevant question about the nature of the faces. Notice, however, that
B uses “sides” in two senses. Then B asks two questions which on the basis of the
known information, are merely guesses. Finally, B asks a pertinent question about the
number of faces.

B: Does it have the ... are some sides 4 sided?

F: Ah They alt are.

B: Isita cube?

F: No.

B: Is it a cuboid?

F: No.

B: How many sides does it have?

F: Six.
Student R asks for metric information about angles - in keeping with the assigned van
Hiele level 3:

R: What are the angles between the faces?

Teacher: (After a puzzled pause from student F) We haven’t got a protractor!

R: An approximation will do.

F: Umm ...

R: 30, 45, 60, 90? .

F: Uh, in one face, there are two sets of two sides which meet at 45 ... and uhm,
the other two corners uhm .. the angles are greater than 90 ... and the, -The sides
are parallel.

Student R then asks about the number of faces despite B having already ascertained
that there were 6.

R: How many faces are there?
F: Six.




Student B again asks a series of questions which indicate a functioning van Hiele level
2, in that the questions are more analytical. They also involve visual discrimination in -
which this student tested poorly.

B: Are all the faces identical?

F: Yes.

B: And are they rectangles or cubes... ahh, squares?
F: Neither.

B: But they are all four sided?

F: Yes.

B: Are opposite sides , (inaudible) are they parallel?
F: Yeah.

Student R makes an attempt at identification, and after being unab]e to draw the ob-
ject, asks a question involving symmetry, which one would expect at level 4. Note that
this student has good spatial abilities in all areas and very good position-in-space
abilities:

R: So it’s a sort of squashed cube really?

F: Yeah.

R: I can’t draw it ... (inaudible)

R: If you, er, if you pick it up, and turn it around in 90 degrees and put it down
again, would it, would it fit back into its previous position?

F: Yes. And there is a lot of symmetry in, in each face as well. Between, if you
uhm, put a line between them ... bisecting angles.

We found that the interchange of knowledge that took place during the discussions
contributed to the development of the students. This led some of them to a higher van
Hiele level than that observed in the written test. For example, in the written test stu-
dent B presented very poor responses related to properties of shapes. This student also
‘showed problems associated with position in space perception. On question three the
student regarded tetrahedrons and square based pyramids as identical. The discussion
above indicates a relatively higher achievement for this student in relation to the writ-
ten test.

Comparing the above dialogues it becomes clear that group 1 used a better mathemati-
cal language than group 2. They were able to make clear when the discussion was
about two-dimensional shapes (a face of the solid) or three dimensional objects. In the
beginning of the discussion, without consistent information, group 2 tried to determine
the shape. Also this group used the word “side” without explaining carefully, or nego-
tiating, what they meant.

Conclusion

The students’ oral description of a certain shape depend on a combination of the stu-
dents’ general geometric level, their spatial ability, and their ability to express the
properties of the shape using language. The results from the discussion groups show
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the importance of both spatial ability and language use in the on-going development of
geometric thought. The assessment of van Hiele levels of thinking and Del Grande
spatial perception applied to three dimensional geometry confirmed the hierarchical
nature of the van Hiele levels (Usiskin 1982, Mayberry 1983, Gutierrez et al 1991).
However the assessment of Del Grande spatial perception is not hierarchical. This re-
search shows that it is possible for a student to acquire the abilities pointed out by Del
Grande without any regular sequence.
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ALGEBRAIC EXPRESSIONS AND EQUATIONS: AN EXAMPLE OF
THE EVOLUTION OF THE NOTIONS

Catherine SACKUR, Jean-Philippe DROUHARD#
GECO (Nice), CREEM (Paris), IREM de Nice, IUFM de Nice

The work focuses on a ISth year old student and on her knowledge about

algebraic expressions and equations. Three interviews with her allow us to study

- her progression in constructing a personal concept of equations which appears to

be, at the end, very different from what it was at the beginning and much more

efficient. For this purpose the interviewer leads the interviews in a way which is

based on two theoretical tools, one concerning the structure of knowledge, the
other one the different possibilities of evolution of the mathematical knowledge.

In this work we shall concern ourselves with a girl student, Leslie, aged 15,
through three interviews. We shall see how she builds up gradually some local bits
of knowledge on algebraic expressions, starting with two which are at the
beginning in a violent opposition. As we proceed we shall point out some aspects of
our work which validate the theoretical tools we use:

* it is possible to make a diagnosis of the way a student works in mathematics

* it is possible to change this way of working when it appears to be inappropriate,
and to lead the student to have a reflexive way of thinking about his work, so as
to induce a remediation if necessary.

These interviews have been collected as part of a research project. They had of
course an influence on Leslie work at least during the interviews, but there was no
specific aim to help her perform better at school. Thus we did not work on many
of her local bits of knowledge although we identified them.

THEORETICAL TOOLS

Local bits of knowledge

The notion of local bit of knowledge (Léonard & Sackur 1991) is quite close to
those of representation or misconception but it includes two ideas which have, for
us, the greatest importance, and make the former word preferable to us.

» they are bits of knowledge, which means that they are true
« they are locally true. 4

We consider them as actual knowledge, which implies a positive connotation
wheréas “misconceptions” is more negative.

4 drouhard@unice. fr
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To explain what we really mean by locally true we need to consider three areas
which are useful to interpret the student's activity: the psychological area in which
the local bit of knowledge is coherent for the student, that is has no internal
contradiction; the social area in which the local bit of knowledge is valid, accepted
by a certain community (the social group of mathematicians); the area of reality in
which the local bit of knowledge is efficient, thus yields a correct answer if used to
solve a problem. A local bit of knowledge possesses these three properties within
certain limits which the student ignores (that is why s/he makes mistakes and so
local bit of knowledge bear some resemblance to misconceptions). These limits can
be identified by someone whose knowledge is less partial than the student's, an
expert.

A local bit of knowledge in algebra is for instance: “when one multiplies x by a
the result is greater than x”. It is easy to identify the limits of such a bit of
knowledge: the set of numbers bigger than 1. One can imagine where this bit of
knowledge comes from since many students have difficulties dealing with numbers
which are not positive integers. It has the three properties just described: if one
considers only numbers greater than 1 this bit of knowledge is coherent, it is
recognised as true by mathematicians and produces correct results on these
numbers. Of course as the student ignores the limits of this bit of knowledge s/he
may use it outside these limits (with other numbers) and this will lead to some
incorrect results. We shall discover some other local bits of knowledge when
studying the work of Leslie.

The polarization of the activity

. We use three types of polarization to describe the activity of a person working in
algebra, each of these type corresponds to one of the three areas presented above: if
the student is mostly concerned with the internal coherence of his own activity, if
s/he assesses his results by his own standards, we call his polarization of work
understanding; if his standards of assessment are- borrowed from those of
mathematicians, if they are rules which are mathematically correct, we call it
conformity; if s/he takes his standards in the reality, we call it performance. In
mathematics it is quite difficult to define the reality; for the moment we are still
working on it, and we consider the mathematical reality as an exterior standard
which permits the student to point out contradictions. We shall see how Leslie deals
with it.

Conformity

Conformity plays a very important role in mathematics and especially in algebra.
It should not be taken in a pejorative sense, quite the contrary. From the very
beginning of algebra and Cartesian geometry, mathematicians have developed rules
which permit them to make computations without referring to the meaning of the
computations. Historically, this particularity of algebra has been pointed out by
Leibnitz who wrote about “Blind Calculation”. This led us to refer to students who
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make computations without any control as “blind calculators” (Drouhard, Léonard,
Maurel, Pécal & Sackur, 1994).

The problem we found monitoring the progress of students working in algebra is
that they learn a catalogue of rules without links and sometimes they can't even
imagine that there is a rational presiding over these rules, and that they could know’
it and use it to'control their knowledge.

Purpose of the research

Our research tends to build up tools to help students learn algebra and to cope
with their difficulties; we have observed several students and collected interviews.
The use of our work for remediation purpose has just started and has yield some
results which we can't discuss here.

We observed that most of the time, a student who has difficulties in algebra uses
rules in relation with the type of polarization which we call conformity and his
rules are local bits of knowledge with a very small validity domain, so that they are
only formal:

“when there is a sign “-” before brackets, I change all signs...”
“when there is a 2 before x I put it on the other side, changing signs... d

We believe it is necessary for the student as a first step to shift to a different type
of polarization in his work, if possible to the understanding type, to be able to
coordinate the different local bits of knowledge and build up more comprehensive
ones. For this we try to confront her/him with the mathematical reality, using
performance. To explain this, very shortly, let us say that we don't tell her/him
“look your rule is false, the right one is...”, neither do we explain to her/him again
the reasons why s/he makes such a mistake. Instead, we try to put her/him in a
situation where- his own local bits of knowledge produce a result which is
contradictory from a mathematical point of view (such as 1 = 2) so that s/he has to
change something to resolve this contradiction.

This has led us to develop a particular way for interviewing students which we
call “Write False Interviews”, as we always start by asking the student to write
something s/he knows is false (Sackur 1995).

II- THE INTERVIEWS WITH LESLIE

First interview

Tx

Leslie is asked to write a false equality with 77+ =. She writes 53— Ix = 5, and she

T+x ~
says that it is false. She gives two reasons for this equality to be false and these are:

1) a “+” sign has been changed into a “x” sign so this is not the same and the
equality has to be false,




Jx

2) % equals 1 and T4 cannot be equal to 1, so the equality is false.

7
+x
She tries it with some values of x. (x =1: 7/8 # 1; x=2: 14/9 # I). Then Leslie is
" asked whether this equality is always false. To answer this question she places
herself in a contradictory situation. There is a conflict between two local bits of
knowledge: :

LBK 1. if one changes a computing sign in an algebraic expression, then the
expression changes, which means that its numerical value changes according to
numerical values of x. (The formal aspect of the expression changes and so does
the expression.)

LBK 2. if there is a sign “=" between two algebraic expressions using the letter x,
this is an equation and some computations ‘should “logically” give-a value for

99

X

The first of these two local bits of knowledge is an answer to the paradoxical
injunction (Watzlawick, Beavin & Jackson 1967) “write false” using conformity:
the student knows a rule; to produce something false s/he modifies the rule; using
conformity the change is only formal.

The interview is led in such a way (Vermersch 1995) that it does not permit the
student to go on working using conformity. She has to shift to another type of
polarization, performance or understanding. Thus other local bits of knowledge are
used. For Leslie, in this situation, there is a conflict which appears clearly in what
she says:

S1.  one should have 7x = 7+x and one knows that this is false
S2.  logically if we go on we should be able to find x.

Those two sentences appear frequently during the first interview. Leslie keeps
talking about equations and about finding x, but she cannot do it. What is
interesting for us is that she is no longer able to solve an equation as simple as
7x=T+x (this she can perfectly do in the classroom). She has been brought out of
her type of work, which is conformity and she seems to have no longer any
adequate knowledge to solve this problem; then it will be possible for her to build

. something new and more appropriate. As the interview goes on she tries several
computations to solve this equation but she always fails and she keeps repeating
sentence S1. At the end of the interview she seems to have convinced herself that

7
%" is always different from %

With this first interview one can make a diagnosis about the way Leslie works in
algebra and so one can think of a remedial activity. An effect of the interview is
that Leslie left aside the conformity type, she has confronted mathematical reality
and it will be possible for us to act on her local bits of knowledge.

o
'
-




E

ERIC 124

Second interview

The second interview takes placé twelve days later and Leslie recalls easily
what the problem was: '

Le: one had to know if ;Txxcould really be equal to 1

In: so whai do you think about it?

Le: no, it is different

In: when you say it is different, could you explain what is different?
Le: here we have a sign “+” and here we have a sign “x”, and that makes it different.

She is still working on the formal aspect of the expression. The difference of sign
produces a difference of values as she shows again with some values of x. So the
interviewer asks her whether it is possible for an addition and a multiplication to
yield the same result. Leslie produces 3+x and 4x which are equal if x equals 1,
but she very clearly states that if the number and the x are the same (4+x and 4x or
7+x and 7x) then the result is different and she says that she is demonstrating it
using values of x. At this time Leslie is strongly trapped in the first local bit of
knowledge:

LBK 1 “changing a sign into another changes the expression”.

At that moment the interviewer has to make a decision. It doesn't seem very
interesting to create the same conflict as in the first interview, just in the same way
as Leslie didn't manage to resolve it. So the interviewer asks:

In: what is the use of the values of x you test?
Le: well one gives us an equality, and we don't know whether it is false or not... and so we shall try
to find the X in 34% .., so that if we place itinto i—iwe can see whether it is equal or not
In: and we could try to do it
Leslie is now constructing a new bit of knowledge about equations: .
LBK' 2 “we have an equality and we don't know whether it is false or not...”

This local bit of knowledge has nothing to do with the very formal one that we
saw at the beginning: :

LBK 2 “an equation is made of two algebraic expressions linked by an “=" sign”

3 . .
Leslie solves the equation % = 1 not very quickly but she solves it,

and then with Z%"- =1 there is no problem. At the end she claims:

"LBK 3 - “an equation always have one solution and one only; ;Txx equals 1 if x

equals 7/6 otherwise it is different from 1.

AN
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With the second interview we can see that when she is confronted with a specific
situation, Leslie recalls quickly the tools she possesses to solve a problem. When she
has solved one equation she has no difficulty to solve another one. On the other end
she has a tendency to construct rules about things: “all equations have a solution...”.
This is her way to learn mathematics. Nevertheless it has been possible to make her
elaborate by herself on her own knowledge: she constructed her personal way to
talk about an equation: confronted with the reality “multiplication and addition can
yield the same result”, which she didn't believe at first, she had to construct a
system which could take this into account.

The third interview

This interview takes place after the summer holidays that is two and a half
months later. Leslie is first asked to solve an equation: x+2 = Sx which she does
without difficulty; she checks that the solution is right although she has not been
asked to do it, and she comments on what she is doing:

“one doesn't know what is the x which permits to find x+2 = 5x so one has to
isolate x...

...S0 one cannot say that x+2 = 5x is false as long as one has not found the x which
goes with this equation”.

We find here that after a very long period when she had no opportunity to
discuss the problem the local bit of knowledge LBK’2 about equations that she
developed in the second interview is still efficient. This is a characteristic of
Leslie’s work in mathematics, bits of knowledge acquire very quickly a strong
stability; this can explain why she is quite good in school and why she has some
difficulties which resist all explanations. The other local bit of knowledge LBK 3
we found at the end of the second interview is also still valid: “all equations have
solutions”. This we can observe in what she says:

“‘one must first find if there is one x or several which could go in this equation”
and also in what she does:

» confronted with the equation 24 a2 = -8, she solves 24 @2 = 8 “because a square
number can never be negative”. She cannot imagine that this equation has no
solution.

Again she will shift from the conformity type to another one by the end of the
interview; this time also the way to make her progress in her activity is to make
her confront reality: how is it that one solves the equation 24x = -8 and has to
change equation 24 @2 =-8 into 24 a® =8? She then recalls an equation she worked
on in the classroom that very morning Ox = 9 and she concludes:

LBK' 3 “some equations have no solution”.
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By this time it seems that she starts being able to take responsibility for her own
thinking in mathematics, which means, for us, that she is able to leave the
conformity type aside in order to switch to her own standards.

Interpretation

We shall now briefly sum up the main observations one can make about these
interviews concerning the way Leslie works in algebra.

* What is typical of Leslie’s work in algebra is that she needs to have very stable
local bits of knowledge. She has no flexibility at all. When she leaves aside a bit of

. knowledge because she realises that it doesn't fit the problem she constructs

immediately another one almost as stable as the one before. There are no links
between them and she doesn't seem aware that there should be links: Even when she
gives spontaneous explanations of some property, one can see, observing the words
she uses, that there is no personal investment but a mere repetition of things that
have to be done; an example of this is: “One cannot divide by zero because in the
math class when we have a denominator we always look for the value of x which
makes it equal to zero”. As she has a good memory and works hard she identifies
easily the clies specific to one situation and she performs quite well in algebra,
although, as.we have seen, her knowledge is poorly structured.

* We would like now to examine briefly, neither the evolution of Leslie's bits of
knowledge, nor the way she shifts from one type of activity to another but her
behaviour during the interviews. In the first interview she was always hesitating,
she had great difficulties to find the correct word and kept on making slips of the
tongue (writing “7 + x” and saying “seven x plus one”). We interpret this great
confusion as being created by the conflict mentioned at the beginning and by the
fact that she had no way to resolve it. From the point of view of her elocution the
second interview was much better and in the third we saw a complete change. She
then spoke clearly, the sentences were almost correct with few blanks and
appropriate words in the right place.

In the first interview the interviewer spoke a lot, repeating what she had just said
to help her go on thinking. In the two others she was really leading the work.
Several times she decided what to do, which equation to solve, when give an
example and so on. This doesn't mean that there were no mistakes, quite the
contrary, there were plenty which we did not work on. We can assume that these
mistakes are an evidence that she was doing “her” mathematics, solving “her”
problems, using “her” methods. She was not solving an exercise given by the
teacher with an appropriate well known method. She was wandering inside
mathematics, in a way which seemed to us rather erratic but was certainly not for
her. She had begun to learn that mathematics are not only a list of similar exercises
to be solved in an unique given way. We think that this perception of mathematics,
which resembles what we call the understanding type can be a great help to a
student who has difficulties and takes refuge in misunderstood conformity.
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CONCLUSION

The interviews, and the theoretical tools that we use to interpret them, permit us:

e to identify the local bits of knowledge of a student, their limits within
mathematics and to examine how stable they are,

* to make a diagnosis on the dominant type of polarization used by the student to
work (conformity, performance or understanding),

* to make the student shift from one type to another so as to acquire some
autonomy in her mathematical activity, to make her have reflexive thinking and
lead her to construct the necessary links between her local bits of knowledge,

* to try a remediation on the bits of knowledge. This means working on three
things:
- breaking their inner coherence,
- making them fail in solving problems,
- making them contradict accepted mathematical rules.

It is necessary to prepare carefully the interviews; while the first interview can
begin with almost any question, the followings must permit the interviewer to-
confirm what s/he first found and to proceed as well in his knowledge of the
student's thinking as in the opportunities s’he gives her to develop her autonomy.
This is mainly the job of a mathematician as long as s/he can easily deal with our
theoretical tools. So in this work mathematics and psychology must go hand in
hand.
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INFERENTIAL PROCESSES IN MICHAEL’S MATHEMATICAL
THINKING

Adalira Sdenz-Ludlow
Department of Mathematics
University of North Carolina at Charlotte

This paper analyzes the zigzagging inferential processes (abductions, inductions
deductions) that characterized the mathematical activity of a third grader as he faced the
challenge of solving a novel mathematical task. The task was to find all the possible
pairs, triples, and quadruples from two, three, and four groups of cards.

Types of inference

The mathematician and semiotician Charles Sanders Peirce (1878a, 1878b, 1903)
stressed three forms of inferential reasoning in our inquiries: abduction, induction, and
deduction (see Figure 1). These three types of inferences do not work in isolation
although they have different characteristics. According to him, a deductive inference
is an analytical process by which particulars follow from general premises; thus, no
new knowledge is produced in the process since there is nothing in the particular
cases that is not implied by the premises. In contrast, he argued that new knowledge
is gained “through the mechanisms of induction, which itself functions with the logic
of probability....Induction works by taking a random sampling of a class of things so
that some classwide conclusion can be drawn about respects held in common by all
members of the class” (Peirce, as quoted in Corrington, 1993, p. 43). That is, through
inductive inference new. general principles or laws are generated from particular
instances.

inference .
analytic synthetic
deduction induction abduction/hypothesis/retroduction

Figure 1. Types of inferential reasoning.
(Adapted from Peirce, 1878 a)

Peirce (1903) clarified that “the first starting of a hypothesis and the entertaining
of it, whether as a single interrogation or with any degree of confidence, is an
inferential step which 1 propose to call abduction [or retroduction]...I call such
inference by the peculiar name, abduction, because its legitimacy depends upon
altogether different principles from those of other kinds of inference” (p. 151). For
Peirce (1878a, 1878b, 1903), deduction and induction alone cannot account for the
introduction of new knowledge without abduction. He argued that abduction provides
the reasoner with a hypothesis that accounts for the observed facts. “Unlike inductive
inference, which moves from random samples toward a conclusion about a class of
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objects, hypothesis goes in the opposite direction, proceeding from a general rule or
theory toward a given particular case” (Peirce, as quoted in Corrington, 1993, p. 46).
The generation of a hypothesis is a creative act that may come to us “in a flash” or
through an extended period of fantasy or work. According to Merrell (1995), an

. abduction or an abductive conjecture or hypothesis is often a guess but an educated
guess “ideally following from much living, much study, and much contemplation of
life in general and of a particular problem one has at hand” (p. 56).

The generation of a hypothesis is only one aspect of the abductive process; besides
creation, abduction also involves application. A hypothesis must be applied to the
case at hand and compete with other hypotheses that could possibly explain the
observed facts (Corrington, 1993). Peirce also emphasized the transitory, slippery
and temporary nature of the process of generating hypotheses as well as its relative
lack of certainty, since more than one hypothesis could be entitled to account for
observed facts (Anderson, 1995). Peirce (1903) acknowledged that the selection of a
hypothesis is subjected to certain conditions which were already recognized by
logicians long before he classified it as an inference. “The hypothesis cannot be
admitted even as a hypothesis, unless it be supposed that it would account for the
facts or some of them. The form of the inference, therefore, is this: The surprising
fact, C, is observed; but if A were true, C would be a matter of course; hence there is
a reason to suspect that A is true. Thus, A cannot’be abductively inferred, or if you
prefer the expression, abductively conjectured until its entire content is already
present in the premis(e), ‘if A were true, C would be a matter of course’” (pp. 151-
152).

Mathematicians and mathematics educators have recognized the influence of
abductive processes in mathematical thinking, although under different names. Polya
(1945), for example, cast heuristic reasoning under the light of a plausible guess and
different from the deductive type of reasoning that furnishes a proof or the attainment
of a complete solution of a problem. He says, “We must often be satisfied with a
more or less plausible guess. We need the provisional before we attain the final” (p.
113). Lakatos (1976) acknowledged the nonlinearity of inferential reasoning as he
says, “Discovery does not go up or down, but it follows a zig-zag path; prodded by
counterexamples, it moves from the naive conjecture to the premises and then turns
back again to delete the naive conjecture and replace it by a theorem. Naive
conjectures and counterexamples do not appear in the fully fledged deductive
structure: the zig-zag of discovery cannot be discerned in the end product” (p. 46). .
Hence, new mathematics knowledge is not only dependent on abductions but follows
the zigzagging inferential process of abductions, inductions and deductions.
Consequently, the zigzagging nature of inferential processes in mathematics inquiry
‘does not appear written in textbooks and will not be foregrounded in teaching.
Mason (1995) points out that in trying to avoid difficulties, “the curriculum turns
everything into behavior, avoids awareness, assumes deduction, tolerates induction,
and ignores abduction” (p. 4).
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Methodology

Teaching experiment

The constructivist teaching experiment methodology consists of long-term
interactions between the researcher/teacher and students. This methodology focuses
primarily on the students’ conceptual constructions. The main goal is to infer the

students’ constructions of mathematical concepts and operations (Steffe, 1983).

Interactions between the researcher/teacher and the students are intended to bring
forth the students’ mathematical activity and the constructive evolution of his/her
mathematical concepts. A constructivist teaching experiment was conducted with six
third graders who were interviewed 17 times throughout the school year to inquire
about their constructive efforts to conceptualize fractions.

About Michael

Michael was a nine-year old boy who participated in the teaching experiment with
five other children. He was perceived by his school teacher as a good student, but not
doing as well in mathematics as the others. Michael was a quiet and reflective child,
always willing to accept intellectual challenges and able to recapture his mental
activity and express it in words. He had participated ‘on eight interviews on whole
numbers and fractions before he participated in the interview reported here. This
interview served as a warm-up after the Christmas break. In an earlier paper
(Cifarelli and Séenz-Ludlow, 1996), Michael’s mathematical activity in solving this
task was partially analyzed to illustrate hypothetical reasoning. The present paper
extends this analysis to specify the mediating role that abduction had in his thinking.

About the task

The task posed to Michael in this interview was to find the total number of pairs,
triples, and quadruples from different groups of objects. He was presented with four
groups of cards in the following sequence: (a) a group of letters and a group of
numbers; (b) a group of letters, a group of numbers, and a group of figures; (c) a
group of letters, a group of numbers, a group of figures, and a group of colors. The
cards were displayed over different sheets of construction paper as a means to define
a boundary for each group of cards. The number of cards in each set was changed to
vary the degrees of difficulty of the task. Michael was asked for the number of pairs,
triples, and quadruples that might be possible to make if he were to choose one card
from each set. This task was used by Leslie P. Steffe in his teaching experiments
with second and third graders and he encouraged the author to use it.

Analysis
Making pairs
The following dialogue took place when the teacher/researcher (T/R) asked

Michael for all the possible pairs that could be made from the letter-set with the
letters A and B and the number-set with the number 1.
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I T/R: Do you know what a pair is?

2 M: Yes, itis two of a kind.

3 T/R: (displays cards with the letters A and B over the first sheet of paper; and a card with the number 1
over the second sheet of paper) ! How many pairs can you make here?

4 M: None. :

5 T/R: Why?

6 M. Because they are not alike.

7 T/R: OK. Suppose that even if they are not alike you can still pair them by taking first a letter and then a
number.

8 M: (After some seconds) OK. One, Al.. Wait Al, Bl.

9 T/R: (displays cards with the letters A and B, over the first sheet of paper; and cards with the numbers

{ and 2 over the second sheet of paper) How many pairs can you make now?
10 M: (moves the cards A and B close to 1) Al, Bl {moves the cards A and B close 10 2) A2, B2.

Upon the agreement of the constitution of a pair from two different sets, Michael
seems to have found a pattern or strategy to form such pairs. This pattern is indicated
by his explanations and gesturing (Lines 8 and 10). A moment of reflection on the
above dialogue brings to mind several questions: Where did the pattern come from?
Will Michael apply the pattern again? Will he be able to find the number of pairs
before finding the actual pairs? Is he aware of the pattern and will he be able to
describe it? The following dialogue (Lines 11-18) indicates some answers to these
questions. :

1 T/R: (displays cards with the letters A and B over the first sheet of paper; and cards with the numbers
1, 2, and 3 over the second sheet of paper) How many pairs can you make now?

12 M: Six. Al. Bl; A2, B2; A3, B3.

13 T/R: (adds a card with the letter C to the cards with the letters A and B and the card with the number 4
to the cards with the numbers 1, 2, and 3) How many pairs can you make here?

14 M: Thisis going to be hard (after some seconds he nioves his fingers from each of the letters A, B, C
toward the number 1, some seconds later he gives the results) 3, 6, 9, 12.

15 T/R: Why?

16 M: Because there are three letters here (showing the letters A, B, and C). A, B, C can be paired with
1, that’s 3; A, B, C can be paired with 2, that's 6; A, B, C can be paired with 3, that's 9; A, B,

C can be paired with 4, that's 12. {touching each number-card he says) 3, 6, 9, 12.

17 T/R: (adds a card with the letter D 1o the letter-set. Now the letters over the first sheet of paper are
A, B, C, and D and the numbers over the second sheet of paper are 1, 2, 3, and 4) How many
pairs can you make here?

18 M: Sixteen either way. These (showing the letters) can go over here (showing the numbers) or these
(showing the numbers) can go over here (showing the letters). All four letters can go to 1, that's 4;
all four letters can go 1o 2, that's 4; all four letters can go 1o 3, that's 4; all four letters can go to
4, that's 4. So there are sixteen in all.

19 T/R: Very good!

-

Michael is not only able to apply the pattern again but ﬁnds the total number of
pairs before he describes them (Line 12). This is an indication that Michael is well
aware of the pattern he generated. Michael applied his conjecture for making pairs
when he was asked for the number of pairs from the three letter-set (A, B, and C) and
the four number-set (1, 2, 3, and 4). After some seconds of thinking, Michael came
up with the total number of pairs by saying “3, 6, 9, 12” (Line 14). The four times '
that he counted by 3’s indicates that he was pairing each time the three letters with

'Comments in parcnthesis are descriptions of Michael’s and teacher/researcher’s nonverbal actions.
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each one of the four numbers. In Line 16, he verified his conjecture describing such
pairing in detail indicating an awareness of the pattern. In Line 18, he described the
pattern demonstrating again the application of his initial abduction (hypothesis or
conjecture) of pairing the letters with each of the numbers.

Up to this particular point in the interview, Michael had proceeded in an inductive
manner supported by his first organizing abduction (coupling all the letters in the
letter-set with each of the numbers in the number-set). The word organization comes
from the Greek term organon which means instrument; in this sense, the organizing
abduction makes reference to the instrumental nature of Michael’s insight as to the
constitution of the relational order which could lead to the completion of all the
possible pairs from the sets of letters and numbers. Thus the answer to the first
question “Where did the pattern come from?” is that it came from a creative act
which was the result of an abduction that I have called an “organizing” abduction.
Here, there is an instance of a creation and application of an abductive hypothesis. If
he had not made that abduction, it would have been impossible for him to solve the
tasks because there was nothing in the teacher’s questioning that would have directed
him to do so.

Making triples

In the following dialogues the teacher posed the problem of finding all possible
triples from three different sets. The teacher systematically increased the number of
objects in each set making the task more difficult each time.

20 T/R: (places two cards with the letters A and B on the first sheet of paper; one card with the number |
on the second sheet of paper; and one card with a & on the third sheet of paper) How many
triples can you make here?

2] M: Four. ABI, ABA AlA Bl A

22 T/R: That is perfect if  wanted 10 have more than one element from each group. But if  want to have
a letter once, a number once and a figure once, how many triples would you be able to make?

23 M: Then you have two, Al A, Bl A.

24 T/R: (displays the letters A, B and C over the first sheet of paper; the numbers 1 and 2 over the
second; and the figure & over the third) Now how many triples will you be able to make?

25 M: (after some seconds) Three.

26 T/R: OK. which ones?

27 M:  (with his fingers makes a movement from the set of letters 1o number I and 10 the A, lhen Jfrom the
set of letters to the number 2 and 1o the &) Al A, Bl A, ClA; A2A B2A C24A. (Thefgure
below shows the-trajectories Michael made with hl:fnger:) Six.

A

In Line 21, Michael described all possible combinations with three elements from
the four elements in the three groups (A, B; 1; and 4). Once an agreement was
reached about the conditions for making the triples, he found two triplets (Line 23).
As the teacher changed the conditions of the task adding one letter and one number
(A, B, C; 1, 2; and A), he quickly answered “three”. However, when he described

them he found six (Line 27). His description of the triples indicated that he was

Q 4-124

ﬂsn



pairing each of the possible couples from the first two groups with the element in the
third group. The question that arises here is whether Michael would apply this
pattern again or generate all possible triples from three sets in some random manner.
28 T/R: (displays the letters A, B and C over the first sheet of paper; the numbers I and 2 over the second;
and the figures A and O over the third) Now how many triples will you be able to make?
29 M: (silently moves his fingers from left 10 right like tracing trajectories) Nine...; wait [ can make ten.
30 T/R: Can you describe them for me?

31 M: (describes the triples while moving his fingers from left to right over the cards; the lines in the
diagram represent the sweeping action of his right hand).

= A

8
AlA BlA, ClA three; A2A B2A, C24, six; AlE BIE CIHE nine; A2E B28, C28

Twelve.

In line 28 the teacher varied the problem by adding a card with a square to the third
group. Now the cards are (A, B and C; 1 and 2; and A and &). After giving the
answer ‘“nine...; wait I can make ten”, Michael systematically described the triples
while inscribing trajectories with his fingers to join the cards. A careful observation
of the pattern of the triples indicates that the pairs from the first two sets are
systematically coupled with each of the cards with the figures. Hence, Michael
applied his pattern for making triples again. That is, all the elements from the first set
(in this case couples) are paired with each of the elements of the second set (in this
case A and ®). If Michael had not considered each pair as an entity in itself, he
would have not been able to generate this systematic strategy. Instead, he might have
generated them in some random order making it difficult to keep track of them. The
question that comes to mind here is whether or not Michael was aware of this pattern
and in what degree. The following dialogue gives an answer to this question.

32 T/R: (displays the letters A, B, C and D over the first sheet of paper; the numbers I and 2 over the
second, and the figure A over the third) In this case how many triples can you make?

33 M: (after some seconds) It's 8 because the number of triples is the same as the number of pairs if
take this triangle away.

34 T/R: (displays the letters A, B, C and D over the first sheet of paper; the numbers I and 2 over the
second; and the figures & and B over the third) So now how many triples would you be able 10
make?

35 M: (akes the triangle in his hands and says) like that I can make 8 triples; (puts the triangle back)
that’s 8. 8 and 8is I6. :

36 T/R: (puts four cards in each of the sets: four letters A, B, C and D; four numbers 1, 2, 3 and 4, and
Jour figures A, B, @ and %) How many triples would you be able to make now?

37 M: (after some seconds) 62.

38 T/R: Why?

39 M: Sixieen couples with numbers (Showing the set of letters and numbers). 16 and 16 is 32 (showing
the & and the B) and 32 and 32 (showing the @ and the %) is 64.

40 T/R: (makes three piles of cards instead of leaving them displayed on the sheets of paper) How many
triples can you make with these three piles of cards?

41 M:  (Looks at the piles for some seconds and then counts the number of cards in each pile) Three
cards here (cards with letters), and four cards here (cards with numbers), that is 12 pairs; 8
cards here (cards with figures), that makes 96 triples.

42 T/R: Why?
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43 M: Because 12 and 12 is 24; two twelves are gone. 12 and 12 is 24; and 24 and 24 is 48, Jour
twelves are gone. 48 and 48 is 96.

In Line 33, Michael’s solution was completely novel. His expression “the
number of triples is the same as the number of pairs if I take this triangle away”
indicated the use of each pair as an entity in itself to generate all the possible triples.
In Line 35, he applied his abduction by coupling each pair from the first two groups
with each figure in the third group. When the cards displayed were A, B, C, and D;
1,2, 3, and 4; and 4, m, @, and >, he found immediately 62 triples and made no
attempt to describe them. As he described the process, he found 64 because “sixteen
couples with the numbers (showing the set of letters and numbers). 16 and 16 is 32
(showing the triangle and the square) and 32 and 32 (showing the circle and the star)
is 64.” In Line 41, he also used this strategy in a deductive manner since, after
several trials, he assumed its viability and applied it to the case at hand.

The novelty in his solution is accounted for by an abduction that is more complex
than the organizing abduction that led him to establish a particular way of relating the
objects of two groups to make pairs. What is novel in his new insight is that he
implicitly considered the triple as a couple whose first element is a couple itself. I
call the above abduction a structuring abduction because it is more complex
(considering a couple as a single element) and general (considering a triple as a
couple) than his organizing abduction. The word structure comes from the Latin verb
struere, which means to construct. Michael’s abduction here is called “structuring”
to emphasize his complex insight (or abstract organization) in taking one pair as a
unique entity and each triple as a complex pair.

Making quadruples

Michael’s explanations to find pairs and triples in the above tasks indicated
abduction-induction-deduction chains of reasoning. Would Michael be able to carry
out this chain reasoning to find the number of all possible quadruples with four
different groups of cards? The following dialogue indicated that he was able to do so.

44 T/R: How many quadruples can you make here?

A 1 A blue

B 2 [ yellow
(o 3

D

45 M: (Looks at the cards) This is hard! (After some seconds) Let me see how many couples are over
here [takes the triangle and the square in his hands] twelve. Twelve and twelve is twenty-four
triples (returning one figure-card at a time). Then twenty-four and twenty-four is forty-eight
quadruples (showing each color-card).

46 T/R: Why?

47 M: Istarted making pairs, then triples and then quadruples.
¢
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Michael’s solution to the above task indicated another abduction-induction chain
rooted in his prior structuring abduction. His explanation in Line 45, indicated that he
took each couple as a unitary entity to make triples (as complex couples) and then
each triple as a unitary entity to make quadruples (as complex triples). He explicitly
expressed his strategy in Line 47. That is, his structuring abductions did influence the
building up of a generalization as a product of abductions, inductions, and deductions.

Conclusion

Michael’s mathematical activity was sustained by his motivation to stand up to
the challenge of solving an evolving task that was novel and different to him. His
solutions and explanations provide an illustration of the zigzagging nature of the
inferential processes in his mathematical activity. Michael’s burst of abductions
occurred synergistically with inductions and deductions and not as isolated cognitive
processes. In questioning him, it was important not to pose leading questions that
would hinder his idiosyncratic way of thinking. Due to the novelty of the task, his
abductions (in Peirce’s sense), or conjectures (in Polya’s sense), or insights (Mason,
Burton, and Stacey’s sense, 1985), or engendering and metamorphic accommodations
(in Steffe’s sense, 1991) were easy to capture. Michael provides us with an example
of a child’s inferential processes at his own level of logical reasoning, while solving a
mathematical task.
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STUDENTS APPROPRIATION OF MATHEMATICAL ARTIFACTS DURING
THEIR PARTICIPATION IN A PRACTICE: A PROPOS DE A. SFARD...

Madalena Pinto dos Santos — Preparatory School of Caxias

Jodo Filipe Matos — Department of Education, Faculty of Sciences, Lisbon

In this paper we will present for discussion some ideas that arrive to us both from
reflecting on the results of our own research during the last three years and from
some readings namely from Jill Adler, Jean Lave and Anna Sfard. We will present
briefly the research we have conducted, with some detail on the conceptual
framework and the results. After that, we will summarize some ideas presented by
A. Sfard' in Seville (1996) underlining aspects more closed related with our own
research. Finally, we will propose some questions we are now working on after

- looking back to those results and the Portuguese educational context.

Introduction

We were working, for the last three years, on the Project MARE! seeking for
a better understanding of how students relate mathematics and reality when they
are learning mathematics through problem solving activities. On MARE'
conceptual framework we assumed a situated approach to learning, in Lave's sense,
and strong connections with activity theory. The elaboration of its final report was
a good reason to look back at our own work — process and learning — and,
hopefully, be another good learning moment. Some thoughts and questions came to
us in this final moment (some of them we are now working on in our new project
"Thinking mathematics learning with Cap Vert"). We find some connections
between our concerns and J. Adler and A. Sfard ideas presented in 1996 in two,
conferences on mathematics education — PME20 and ICMES — recognizing them
as good reasons to think on mathematics learning. In this paper we intend to share
our reflections on these process and thoughts. Firstly we will present a brief report
of main aspects of our research, secondly we will summarize some ideas of A.
Sfard's paper, finally we will discuss two questions relating our research to Sfard
and Adler positions.

What have we done and how we spoke about it

The main focus of our research was to understand how children's
mathematical knowledge is structured in their everyday activities in mathematics
classroom.

! This project was funded by Junta Nacional de Investigagdo Cientffica e Tecnol6gica under grant
#PCSH/585/93.
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Theoretical background?

The bases for MARE theoretical background came, mainly from three
authors and approaches: (i) Vygotsky and the activity theory; (ii) Lave and a
situated perspective of cognition and learning; (iii) Schoenfeld and an approach of
mathematics learning as a process of developing a mathematical point of view. On
the other hand, we had always in mind the recognition of the cultural nature of
both human activity (as for instance, the mathematical one) and human cogpnition.

Me 1

The research problem and the conceptual approach justified a methodological
orientation with concerns that, in some aspects, are usual in ethnographic
researches: (i) we were attentive not only to what people say, but also to their
acting and to the artifacts they use (recognized by Spradley (1979) as some
characteristics of a ethnographic study); (ii} our efforts to understand students
points of view and to maintain a close relation between the research process and the
phenomenon in it natural setting (considered by Ball (1993) as important concerns
in ethnography).

With this conceptual and methodological ideas we studied a small group of gth
grade Portuguese students in their mathematics classroom, considering the unit of
analysis proposed by Lave (1988): "(...) the activity of persons-acting in setting”
(p. 177).

We observed one ordinary (mathematics classroom — in a public secondary
school of Lisbon, with a male teacher and 28 students, without special
arrangements on the curriculum or the activities — for every mathematics class
during one month. We registered on video and on tape-recorder (two groups of
students and the teacher discourse). We also interviewed the teacher and the
students observed. We worked on the tapes transcription trying to interpret
students activity. Saxe's analytical framework (Saxe, 1991) was very helpful in
order to make sense of our preliminary interpretations.

So f lysi

The description and analysis of the everyday practice of students in
mathematics classroom context enabled us: (i) to identify the structure of the
school mathematics practice, as well as the students motives and goals to participate
in the activities; (ii) to stress the role of social interactions between the various
participants; (iii) to understand how students appropriate school mathematical
artifacts in that practice. We analyzed some situations of students' use of the
mathematical artifacts (mediatriz, scale drawing, Pytagoras theorem) in order to
understand what we called’ Students’ appropriation process of mathematical

2 This theorical framework is fully presented in Santos, M. "Na aula de Matemdtica fartamo-nos
de trabalhar — Aprendizagem e contexto da matematica escolar” Master thesis.
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artifacts 3. The concept of structuring resource* played an important role on the
analysis of students’ process.

Then it was possible to identify some mathematical objectives (to the students
in observation) that emerged from students mathematical practice, such as:

* To understand by doing and to do by understanding, talking and
collaborating with others — To understand and to do are two processes that help
each other and that are necessary one to the other. In order to understand what is
being done we need to look for a sense for that "doing". For all of these it is
important to share information with others, to discuss with them our solving
processes, solutions and reasons to do such thing in such way.

* To use the proper mathematical artifacts — In mathematics we use certain
methods, schemes, concepts, rules, materials and there are also proper
conventions. We learn mathematics when we are learning to use all those and we
are able to justify why we are using a certain thing in a certain situation.

* To legitimate results and processes — Mathematical results and processes
can be legitimated in various ways: authority (eg. the teacher or the book),
consensus with the colleagues (in our group) or with the best students (in the class),
the processes (eg. geometrical) and the artifacts we use (eg. scale drawing,
theorems, the rigor).

Some of Sfard's ideas .

In order to enable the readers to follow our reflection, we will summarize
some ideas (those that are more connected with the points we want to discuss in the
present research report) presented-by Anna Sfard (1996) in her paper "On two

~ metaphors for learning and on the dangers of choosing just one".

As A. Sfard says, her aim was "to arrive at a kind of comprehension that
would enable a reflection on tacit assumptions which seem to guide our thinking on
learning from behind the scene” (p. 2). To do so, she identified metaphors for
learning (conceptual metaphors in Lakoff' sense) that "underlie both our
spontaneous everyday conceptions and scientific theorizing" (p. 2). After making a
search on the professional literature she considered two major metaphors for
learning — acquisition and participation — in mathematics education research
She notice that in recent texts both these metaphors are present simultaneously,
however each of them was more dominant in different periods (the first in_older

3 In Santos, M. and Matos, J. F. (1996) "Mathematics Learning — where cognition and culture
meet" it was described one of those processes — the student appropriation of mediatriz notion.
*To analyze the articulation between different activities and to understand the process that makes
possible that the "same" activity in different occasions could have different meanings, Lave
(1988) proposed the concept of structuring resource — something (activity, person, objects,
etc.) that help the structuring of a process. So, we can see this idea of structuring resource as
something that help us seeing how activity and context interrelate.
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studies and the other in more recent ones). As the title of the presentation shows, it
is not made any claim on exclusivity for one metaphor in Sfard discussion®. Sfard
summarizes, in the following map, her point of view on both metaphors about
some fundamental aspects considering that in mathematics education we are living
(thinking and talking) in “the twilight zone in between the two metaphors” (p. 11).

Acquisition metaphor Participation metaphor
individual enrichment goal of learning community building
acquisition of something learning becoming a participant
recipient (consumer) student peripheral participant,
(re-)constructor apprentice
provider, facilitator teacher expert participant, mediator,
preserver of practice/discourse

property, possession knowledge aspect of practice/discourse
commodity (individual, public) concept activity
having, possessing knowing belonging, participating,

’ communicating

Fig. 1: The metaphor mappings (Sfard, 1996, p.11)

Sfard strengths, several times, that she is analyzing how different schools of
thought assume the nature of learning rather than to their positions on the
mechanism "of learning. Doing this remark she considers that in various
frameworks (from the moderate constructivism to the sociocultural theories)

"in spite of the rhany differences of 'how', there has been no controversy
about the essence [...] focusing on the 'development of concepts’ and on

'acquisition of knowledge' they implicitly agreed that this process can be
conceptualized in terms of the acquisition metaphor” (p. 7).

During her presentation of the participation metaphor she calls our attention
to the changing of words (and the meanings of those changes) used by researchers
to talk about learning aspects: instead of "concept" or "knowledge" they use
"knowing", they look to activities instead of states. She considers also important
that "the ongoing learning activities are never considered separately from the
context within which they are taking place” (p. 8). One fundamental aspect of this
perspective stressed by Sfard is that the learner is viewed as someone interested in
participation (in a certain kind of activity) rather than in accumulating private
possessions. In this context, the teachers are the preservers of the community'
continuity and the learner "from a lone entrepreneur [...] turns into a integral part
of the team” (p. 8) being this team, to A. Sfard, the mathematizing community.

5 In this aspect could be interesting to read S. Lerman’s (1996) paper on his position about these
O

two metaphors.
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This last point, seems to be, to J. Adler (1996), one of the most problematic
question to address when we shift the "Lave and Wenger's theory of social
practice” (p. 3) into school learning. For Adler it is difficult to identify what is the
community of practice in school mathematics, and related to this, what might
constitute participation (legitimate peripheral participation in Lave's sense) in the
mathematics classroom.

A propos de Sfard, Adler and Lave... some thoughts on our work

The school mathematics practice observed in our research, can be described
as solving problems in groups or pairs of students, with a lot of opportunities for
students to discuss and to communicate their ideas to others (colleagues and
teacher). Those problems were not "realistic problems" but prepared by the
teacher in order to enable students to work with the mathematical artifactsé he was
interested on (mainly by institutional motives).

During those solving activities, the relations observed between peers
frequently generated, recontextualized, or interrupted students patterns of
practice. For instance, we saw one boy (F), usually interested in a more scholar
approach to problems (to give an answer to the problem even cheating the
proposal), becoming actively involved in a more effective work on that problem
due to his interest in continuing to be a preferable peer to his colleague (T —
someone who needs to understand what he is doing). In the same way, we saw this
last boy (T) very confused changing his usual way of dealing with problems and
with F, following his peer approach in order to accomplish the pace of work
imposed by F in a situation where this partnership was in dangerous (in T's mind)
due to an enlargement of the group and a manifest interest of F in working with the
new colleague.

It was also observed the students valuing or not their colleagues
collaborations and ideas according to the power relations existing on the group.
We identified two main sources of this power: (i) social status ~— the boys
popularity among girls, who could maintain a dialogue about certain interests and
to show some knowledge about them; (ii) scholar status — better school marks or
the ones that seem to be able to maintain a good dialogue with the teacher (longer,
or with more intimacy).

All these aspects seemed to be strongly connected to students motives to
involve in classroom activity. In fact, it was possible to identify in the three boys
observed different motives for participation-in that practice. For instance, F is a

6 In Saxe (1991) terms, artifacts are "historical products that can be conceptual (for ex., the
cientific concepts), symbolic forms (for ex., numerical system) or material (for ex., tools)" (p.
4). So, it seems that not only the rulers, compass, calculators, and so on, could be thought as
artifacts but, also, the mathematical notions such as strategies, methods, rules and concepts.
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boy very much interested in the social aspect of classroom life. He his very
attentive to the impression he causes on others, he tries to mark the pace, to be
helpful to others, to be recognized as the one who is right. T said (about F) in the
interview:
F thinks that he is the boss [...] sometimes he needs to be a very good
person and enjoys to help the others and teaches them everything.

On the other hand, T is a boy who knows what he wants to do in life (to study
pharmacy) in order to take care of family business. He is always very concerned
with the understanding of what he is doing, trying to be able to say why something
should be done in a certain way. He is the one who usually asks "why" instead of
"how" (as F usually asks). We can see this idea when T talked about himself:

' This year I know mathematics,... sometimes I can't know exactly how to
solve a problem but I know what I'm doing and why I'm doing in that way...

The third boy of the group (M) worked with F and T for the first time during
the observation period. He was always changing of group and as T and F said in
their interviews He is rejected. His participation in that group seemed to have one
strong motive — to be accepted by the two boys - and, becoming part of this group,
to be recognized by the colleagues and the teacher. He was almost all the time a
good listener of F (who likes to speak to someone when he is working), he showed
to the other groups that they already solved something (not usual to F and T), he
tried to made the calculations needed and offered those results to F and T (trying to
be useful).

This practice was lived by students, but in the classroom there is also the
teacher. He was responsible for choosing and designing the tasks; he decided
completely the curriculum and class organization; he gave information when
students asked or when he decided they needed; he was a model in terms of
discourse about what they were doing. However, his discourse and ideas were
followed within the group usually, according also to students motives and power
relations in action at each moment in the group. In some moments they were more
dependent of teacher orientations than others. For instance, during the first five or
ten minutes of the class they were the traditional pupils asking for a more
traditional teacher than when they become involved in the mathematical activities
(during the rest of the hour). It was as if they needed some time to change from one
practice to another, being this changing due to institutional aspects (the bell rings to
finish the time break and to begin a different class in another room, with another
teacher as well as to another subject). They were obliged to change some aspects of
their practice although maintaining others (the scholar ones).
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We said before that these students appropriate mathematical artifacts through
their participation in mathematics classroom practice. In this way we now can see
us as someone who uses old words with new meanings or, as Sfard says, one way of
living in the "twilight zone” in between the two metaphors. But were we thinking
on students as containers of those mathematical artifacts? Not exactly. We used the
word "appropriation” to show the difference between: (i) using the artifact as a
structuring resource — something that it is there to be used and they use because
makes sense for our purposes.— (ii) or using the artifact with a mathematical point
of view, something that mediates their approach to new problems. The former
happens when, for instance, F used Pytagoras theorem because the teacher
considers the geometric resolution not rigorous enough (he wants to please the
teacher), or when M (he wants to belong to the group) accepted that he needs to
have a strategy before to use the calculator. The later was the case, for instance of
T proposing to do a scale drawing as a good strategy to solve a particular problem

" (without any suggestion from teacher or the task text).

However, we understand this changing in students actions possible because
they are participating with others in a system of activity which they recognized as
having a specific practice and rhetoric. So we think that the students are
participating in a kind of community of practice when they are working in group
or in pairs, according to what Lave (1991) said about community of practice: "It
[does] imply participation in an activity system about which participants share
understandings concerning what they are doing and what that means in their lives
and for their communities” (p. 98). Although the different students had different
motives to involve in class activities, we believe they shared some understanding
about what they were doing (in terms of school mathematics activity). However,
we feel necessary more research in order to identify what constitutes a community
of practice in the mathematics classroom (from students point of view) and to
enlighten the teacher's role in that community. At this moment, we can not see the
teacher being identified by the students as the "old-timer” of a community where
they want to belong. They see him more as a "preserver" of a certain kind of
knowledge existing within a community (people using mathematics) or someone
who represents that community and have the responsibility to teach them how that
community works. But Lave is also enlightening the importance of those activities'
meaning to students lives both as individuals and as elements of a certain
community. In fact, in 1995, Lave is much more clear in connecting learning to
identity-making "learning, taken here to be the first and principally the identity-
making life projects of participants in communities of practice, has a crucial
implication for the teaching in schools" (p. 157). If she is right about this point,
schools (and teachers) need to address the challenge of incorporating class
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activities into the life projects of students and helping them to accomplish their
projects. In order to do so, we need to know much more about the different
communities of practice (inside and outside schools) where students belong (or
want to belong), what they are learning there and how, and to understand how they
relate their participation in school activities with their participation in society.
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DOES TEACHING MATHEMATICS AS A THOUGHTFUL SUBJECT
INFLUENCE THE PROBLEM-SOLVING BEHAVIORS
OF URBAN STUDENTS?!

Roberta Y. Schorr, Carolyn A. Maher, and Robert B, Davis

Rutgers University
New Brunswick, New Jersey, USA

This research was conducted to study the impact on students of a five-
year teacher development project in mathematics for elementary
teachers in an urban school district. Students taught by project teachers
performed better in both classroom problem-solving activities and task-
based interviews than students taught by non-project teachers. In
addition, there were major differences in the problem-solving behaviors
of the two groups. Experimental students displayed greater
mathematical confidence, and were more likely to see mathematics as a
powerful way of thinking about the real world and approach
mathematics. as such.

In the past several years, professional development projects have been implemented
with the goal of helping teachers to create classroom environments where children have
the opportunity to build concepts and ideas when they are thoughtfully engaged in
meaningful mathematical explorations. The projects intended to help teachers develop a
deeper understanding of mathematical concepts and an increased awareness of the ways in
which. children learn.

The ultimate goal of these interventions is improved student learning of
mathematics. An additional intended consequence is that studénts would develop
productive problem-solving perspectives including greater self-reliance and appreciation
for the power of mathematics. Documenting mathematical achievement and problem-
solving behaviors however, must be done in a manner consistent with the goals of the
interventions. An emphasis on obtaining a more accurate picture of children's problem- _
solving performance challenges us to raise our expectations about student success from
improved standardized test score data to an approach which focuses on the way students
think about mathematical tasks (Romberg, Wilson, and Khaketla, 1991; Mabher, 1991;
Esty, Hall, and Fisch, 1990; Peel, Rockwell, Esty, and Gonzer, 1987; Davis, 1984).
Assessment information intending to document deeper and higher order understandings

IThis work was supported in part by the grants from National Science Foundation (MDR 9053597);
Johnson and Johnson Foundation; Exxon Foundation; and AT&T Foundation. The opinions expressed
are not necessarily those of the sponsoring agencies, and no endorsement should be inferred.
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and productive problem-solving perspectives, should be taken from a variety of contexts
which include clinical interviews and classroom observations (Lesh, Lamon, Behr and
Lester, 1992).

Research designed to examine the impact on children’s mathematical thinking and
problem-solving behaviors, with an emphasis on student performance variables, was
conducted in an inner city school district designated as having "special needs" with respect
to its student population.. Teachers in this district had participated in a five-year
professional development intervention in mathematics. A goal was to analyze the process
by which this project impacted the children's mathematical thinking and problem-solving
behaviors (Schorr, 1996). Limitations of space do not allow a complete description of
the teacher development intervention, its design and implementation, and in-depth
analysis of the impact on children's mathematical achievement. Since a thorough
discussion of the above would far exceed the constraints of this forum, this paper will be
limited to describing the framework for studying the differences in mathematical and
problem-solving behaviors for children taught by highly assimilated project teachers and
those who were not, as well as a brief discussion of.the results with an emphasis on a
comparison of the problem-solving behaviors for the two groups of students.

Methods and.Procedures

Guiding questions for this study included the following: (i) Would students taught
by "project” teachers for a period of three years perform better in both classroom
problem-solving activities and task-based interviews than students taught by non-project
teachers for the same time period? and, ii) Were there differences in the thoughtfulness
and problem-solving behaviors of the two groups of students?

The framework for analyzing the children's mathematical behaviors involved a
multi-step process which included the selection of teachers and students.

Selection of teachers. For the purposes of this study, two groups of teachers were
identified. The assignment of a teacher to a given category (experimental or comparison)
was determined by agreement of three Project mathematics educators who were actively
involved in the teacher development intervention. The following criteria formed the
basis for selection of experimental (project) teachers and comparison (non-project)
teachers. Experimental teachers were those who: (i) chose classroom activities that
emphasized inquiry and exploration; (ii) recognized that mathematical learning involves
the active manipulation of meanings; (iii) understood that individuals learn by building
understanding and knowledge through their actions on objects (which may be mental
objects) and their interactions in a variety of social contexts; and, (iv) guided classroom
instruction based on children's mathematical thinking.
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In addition, experimental teachers displayed a high level of interest that was
characterized by the frequency of interaction with Project staff for planning,
implementation, and evaluation of classroom lessons. These teachers were described by
Project staff as displaying a greater tendency to integrate project philosophy into their
regular classroom instruction (Schorr, 1996).

Comparison teachers were those who: (i) taught in a manner which emphasized a
more procedural approach to the instruction of mathematics; (ii) did not regularly focus
on classroom problem-solving tasks that emphasized inquiry and exploration; and, (iii)
did not emphasize meaningful connections among mathematical ideas.

It should be noted that while the classroom practices of comparison teachers did not
reflect the philosophical perspectives of the teacher-development intervention, these
teachers were highly regarded and respected within their own school communities.

Selection of students. In order to look for large differences in treatment variables, it was -
decided to select a representative group of sixth grade students (experimental group) who
had at least three years of teaching from experimental teachers, and to compare them
with students (comparison group) who had virtually no experience with experimental
teachers. The two groups of students were carefully matched according to the following
important variables: (i) gender; (ii). ethnicity; (iii) school community; and (iv)
standardized test scores in both reading and mathematics which came from data obtained
prior to the intervention (when students were third graders). In addition, the students
were selected to evenly represent high, middle, and low achievement levels, as identified
by their classroom teachers. Statistical planning and management for student selection
was carried out by a University Professor of Statistics using statistical data provided by
the school district. These constraints, compounded by the extremely high rate of student
mobility within this urban district, limited the number of students who could be studied to
twelve. Once the twelve students had been identified, data were obtained from three
activities: a classroom problem-solving investigation; a follow-up interview relating to
"the classroom task; and a second interview relating to the use of fractions. These
activities are described below. :

The classroom problem-solving activity. Students were videotaped while they worked in
small groups, on an authentic open-ended mathematical problem. The classroom’ teacher
was asked to assign the children to their respective groups, thereby allowing students to
work comfortably with familiar and/or typical partners. This made it possible to observe
how well the students planned a strategy for dealing with the problem, how well they
were able to analyze their work, and how well they were able to work with other
students. The classroom activity was administered by an outside instructor who was not
associated with the district nor with the intervention project.

The problem activity was an investigation that was carried out during the typical
classroom mathematics instruction time, and one hour was allotted in all cases. The
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particular activity was designed to require students to formulate a convincing argument
that they had found all possible solutions to a given problem, with given constraints. This
activity allowed students to apply exhaustive thinking for the purpose of creating their
persuasive, and defensible argument. Prior to the study, this problem task had been field
tested in several other project and non-project classrooms and found to work well with
both groups after modifications were made.

Interview relating to the classroom problem-solving activity. Students were videotaped
during a task-based interview about the problem task that they had completed. This made
it possible to see how well the students had understood the mathematics, how well they
could carry out the work when they were alone and not aided by other students, and how
well they could explain and discuss their work with an interested ‘adult. To ensure
consistency, all students were interviewed by the same interviewer, within the same time
period of the classroom activity. So that the study would remain blind and unbiased, a
third group of students who had not been selected as either experimental or comparison
but had participated in, and been videotaped during, the classroom problem-solving
activity were also interviewed by the same interviewer.

Interview relating to the use of fractions. Students were videotaped in a second task-
based interview on the use of fractions in solving real-world problems. Fractions were
chosen because they are a well-recognized part of the typical school curriculum at this
level and because they are known to present conceptual difficulties. Again, the
interviewer was the same for all three groups of students. A protocol developed and
field-tested specifically for this interview served to guide the interviewer in probing and
questioning the students.

Each of the activities was videotaped with two cameras, one focusing on the child
(or pair of children in the classroom task), and the other on the work that the child was
doing. (In the case of the classroom activity, several other groups of children were
videotaped so that the targeted students would not feel uniquely involved.) The
videotapes were intended to capture the student's work, facial expressions, and overall
character of the classroom activity and interviews. Videotapes were then transcribed and
checked for accuracy. The data for analysis for each child included all of the videotapes
and transcripts for that child, and his or her written work completed during each session.

The following implementation issues were addressed in order to ensure that the
study would remain blind and unbiased:

Selection of an unbiased, independent classroom presenter. An outside, independent
teacher who had no knowledge of student or teacher assignment was trained to present the
classroom activity. This was intended to eliminate teacher variability.

Selection of interviewers. Two mathematics educators not associated with the district nor
with the intervention project, conducted the interviews. Each of the interviewers holds a
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doctorate in mathematics or mathematics education, and has extensive experience in
mathematics education research.

Creation of rating rubric. A scoring rubric for evaluating the videotapes was developed.
This contained a list of appropriate criteria for analyzing the children's mathematical
performance. These included the following: '

a. Ability of the student to go beyond the execution, of procedural rules; -
Richness, depth and completeness of solutions;

The nature of the representations that were constructed;

. Ability of the student to be metacognitive in a useful way;

o a0 o

The student's ability to investigate the accuracy and goodness of fit of the
mathematical descriptions made;

g

The effectiveness of the student's use of language and communication;
g. The student's ability to work cooperatively with others; and

h. The student's expectation that mathematics is a thoughtful endeavor and that
solutions to mathematical problems should make sense.

An analysis instrument, focusing on these criteria, was developed and tested on a
representative set of the videotapes by a team of mathematics educators. The instrument
was divided into four sections. The first section focused on the classroom problem-
solving task; the next two sections focused on each of the task-based interviews; and the
fourth section focused on the raters' overall impressions of the students.

Selection and_preparation of raters. A team of graduate students, not previously involved
in the project, were selected and trained to use the analysis instrument2. Inter-rater
reliability was high (above 90% for each item). When there was disagreement, it was
never by more than one rating point.

Results

The analysis of data indicates that experimental students (those taught by highly
assimilated project teachers for at least three years) generally outperformed their
comparison counterparts. When the data are considered by section, experimental students
outscored their comparison counterparts in 87.5 percent of all sectional comparisons, and
scored the same in an additional 5.2 percent of all comparisons. Thus, experimental
students had equal or better scores than their comparison counterparts in 92.7 percent of
all comparisons taken by section.

2A rating system was devised by a team of university mathematics educators. Space restrictions do not

wing sy as ¢ Y srematic: pace 15 o not
permit further description, however, the raters had extensive training on the use and interpretation of this
system.
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Data such as the above can appear to show "significance" even though the actual
results may not seem "important” in the everyday sense of the word. In the present
study, there appears to be important differences in student performance. Recall that this
was a "blind" study in which the interviewers, classroom presenter, and raters did not
know which teachers or students were experimental and which were comparison.
However, the interviewers, raters and classroom presenter were able to correctly identify
the experimental and comparison students on the basis of their mathematical problem-
solving behaviors in virtually all cases. More specifically, the interviewers identified the
following two areas as those in which experimental students clearly demonstrated
superior performance:

o experimental students were comfortable and effective in talking with adults about
mathematical matters, making conjectures, testing conjectures, developing lines of
argument, criticizing lines of argument, discussing alternative strategies, etc.; and

o experimental students saw mathematics as a powerful way of thinking about the real
world, whereas the comparison students saw math as a matter of paper-and-pencil
algorithms that they could not easily bring to bear on real world questions.

To shed further light on the significance of the numerical ratings, the following
documentation provided by the raters as they analyzed data from the classroom problem-
solving activity and subsequent interviews will be presented3.. Experimental student 1
"seemed to be confident and willing to risk trying something different and something
over again, [the counterpart, comparison] student [1] did not." The raters noted that in
both interviews, experimental student 2 had a stronger expectation than his comparison
counterpart, that solutions should make sense. In fact, it was noted that experimental
student 2 "doesn't make mindless guess(es), but is trying to find additional solutions".
With regard to experimental student 3, the following rater comments were made: "The
student tries multiple approaches to problems, and is willing to consider different
approaches when suggested by others or discovered by herself....The student looks for
multiple approaches to problems during the problem solving process....[She] demonstrates
confidence in her ability to look for solutions....[She] monitors her own
work,...communicates well, asking questions of others when she feels it is
necessary,...[and] discusses the usefulness of mathematics at points, and expresses interest
in solving problems.” Of her comparison counterpart, the following comments were
made: "[S]he does not look for different approaches...The student does not seem to
perform self-checks of her responses....[She] says she enjoys the problems, but this does
not bear out in her actions”. In the case of comparison student 4 it was noted that she did
"not check her solution to make sure that it makes sense. She seems to find a solution
solely to have a solution”. With regard to this student's counterpart, experimental student
4, the raters noted that "{this student] thinks aloud before writing her explanation. [If this

3All quotations are taken directly from documentation which accompanied the rating instrument.
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student] is confused about something...[she] tries to ask [her partner] a question”. In the
case of comparison student 5, the raters noted that the student copied her partner's work
"but does not check for validity”. They went on to add that comparison student 5 makes
errors and.does. not."even.realize. the error and. that it doesn’t make. sense”.. The raters
made these comments about this student's counterpart, experimental student 5 "[This
student] uses real life examples and [expects] answers that are reasonable". When certain
students could not follow their partner's thinking during the classroom activity, they
repeatedly probed until a suitable response, or level of understanding, was attained. For
example, in the case of experimental student 6 it was noted that, "[he] does an excellent
Job of gettirig his partner to evince what his chip pattern means". However, comparison
student 6 "never questions his partner's [work], just accepts it". The importance of these
comments is that, in general, when experimental students did not understand a solution,
they questioned their own or their partner's work and thinking. The comparison
students, however, as indicated by rater comments, were more likely to accept a solution
without understanding.

In addition to the documentation provided by the raters, the following comments
provided by the classroom presenter will highlight some of the differences between the
experimental and comparison students:

A comment should be made about my role in this project. Again to insure
impartiality, I was instructed to be dispassionate and yet informative while at no
time revealing any hint or clue. My delivery of the task was to be as identical as
possible in each class. I was not told prior to my visits, if the class I was seeing
was experimental or control in nature, nor which of the students being videotaped
was experimental or control. Through observation, I reached conclusions; they
were drawn by the responsiveness of the students, by students’ ability to
communicate with me, and their fellow students, and by the students' ability to
speak and write mathematically. These perceptions were so easily confirmed
throughout the sessions by the witnessing of attitudes such as the way the majority
of each class would initially view the problem, the ease with which students felt
they could discuss their feelings and findings, etc..

Was it easy to spot the control and experimental classes? Yes, for many reasons:
The experimental classes showed a greater proficiency at being able to
communicate mathematically....In a few of the control classes students meritioned
when we were finishing that they thought this activity was going to be about math,
but they hadn't seen any math at all....[I]n the experimental classes there was this
common thread of students who were comfortable with each other, not afraid to
question, more interested in the substance...of [a] solution, [and] able to admit they
had taken a wrong path, and continue [solving the problem]....(Schorr, 1996, pp.
167-168)
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Conclusions

These results suggest that this intervention had an important impact on students’
achievement, their mathematical confidence, and their understanding of what it means to
approach mathematical situations thoughtfully. Based upon these results, students of
teachers who were actively involved in the intervention and had a greater tendency to
integrate project philosophy into their regular classroom instruction, outperformed their
comparison counterparts. These results are encouraging as we continue to work to
improve the quality of teacher development interventions to help create an over-all
atmosphere and school environment where mathematics can become a more thoughtful
study, and one for which all students can feel greater respect. In addition, these results
indicate that urban children can and do benefit by having, over an extended period of
time, teachers who have developed a deeper understanding of mathematical concepts, an
increased awareness of the ways in which children learn, and have revised their models of
classroom instruction to reflect that knowledge.
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Framing in mathematical discourse

\

Anna Sfard
The University of Haifa

Abstract. This paper presents one segment in a series of studies on discursive construction of
_mathematical objects (Sfard, 1996). The focus here is on the way in which the student may become
able to make use of newly introduced mathematical symbols, supposed to signify objects which she
could not yet have constructed. It is claimed that through linguistic associations, the new symbol may
evoke some old meanings which, in their turn, would suggest certain ways of use rather than some
others. The phenomenon is known as framing of the discourse. The main claim of this paper is that
framing, far from being a deviation from the desirable route toward meaning, is often a necessary first
step in the construction of mathematical objects.

This paper presents one segment in a series of studies on discursive construction of
mathematical objects (Sfard, 1996). In that series, it is argued that the discourse of
mathematics may be viewed as an autopoietic system (Maturana and Varela, 1987),
which is continually self-producing. According to this conception, the discourse and
mathematical objects! are mutually constitutive and are in a constant dialectic process
of co-emergence. '

As it is always the case with autopoietic systems, if we adopt this model, we doom
ourselves to the dilemma: How does the ongoing process of co-emergence begin? If,
indeed, the language and the meaning constantly produce each other, the symbols of
mathematics meant to present mathematical objects cannot become fully meaningful
before they are used; on the other hand, how can one use a symbol before the object it
is supposed to present has been constructed? As will be explained in this paper, the
way out of the autopoietic circle may lead through old habits -- through language
games which are already well known and deeply rooted. Indeed, it is only natural that
in order to circumvent the dilemma of having to use new words before we are aware of
their unique uses, we resort to uses with which we are already familiar. We do it by
putting the new words and symbols into slots of well known, well remembered,
propositional templates.

Framing. The ability to make use of symbols that have never been seen before was
observed many times by my colleagues and myself in studies with children who were
not yet acquainted with algebra, and nevertheless displayed a certain intuitive
understanding of algebraic symbolism (Sfard and Linchevski, 1994). At a further stage,

! It is very important to understand that in this cxpression, the word "objects” does not stand alone and does not
signal an existence of special entities which regulate the discourse. It only has sense within certain phrases and its use
is essentially metaphorical. Within our present discussion, I talk about abject-mediated use of symibols, which means a
certain distinct way of manipulating symbols. of solving problems and of communicating -- a mode which reminds us
of what can be observed when people talk about physical objects. whether actually present or only recalled.
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when faced for the first time with an expression 2x+3x=, many students would
spontaneously complete it to the proposition 2x+3x=5x. As reported by Demby
(1994), students usually explain their decision by saying "Two apples and three apples
make five apples”. Clearly, the new symbol, x, was substituted here instead of "apples"
and thus x took the role of a label rather than of a number. This tendency to view
algebraic variables as fitting label slots in non-mathematical discourse/ may account for
a common error of completing such expressions as 2x+3 to 2x+3=5x. This error was
observed many times in the study Carolyn Kieran and I have carried out in Montreal.
We conjectured that the mistaken completion may be due to the underlying reliance on
the template "7wo and three more make five " (e.g., Two apples and three
more make five apples). The plausibility of this explanation was then reinforced by the
fact that when the multiplication sign was explicitly written in the expression (2x+3),
the error usually disappeared. Indeed, the multiplication sign re-directs the student to
a different discourse and associates the expression with a cluster of mathematical
rather than everyday templates. In the arithmetical templates, a slot on either side of an
operator can only be filled with a number. Thus, once the multiplication sign appeared,
it became clear that the x is a replacement for a number and that 2x+3 should be used
according to different rules than initially assumed.

To sum up, the very first use of a new signifier frames the discourse (Tannen, 1993),
namely has the power of directing us toward certain uses rather than toward some
others. Together with old templates come old uses, old meanings. Using another
language, we may say that we are dealing here with the issue of expectations and
verifications. At the first appearance of a new signifier, certain metaphors come into
play and some expectations are born as to the nature of its signified. From now on, the
learner will be testing the expectation, sometimes finding that they were justified and
some other times proving them untenable. The expectations may come from the way in
which the first use of the new signifier is'made, but they can also arise due to the
associations evoked by the signifier itself. In any case, the mechanism of metaphorical
projection from the familiar to unknown is at work 2

Expectations that work — building uses for a new signifier. Let me now turn to an
example which will show the dialectic process of expecting and verifying in action.
The episode is taken from my recent study in which a mathematically precocious 14-
year old student -- let us call him Dan -- learned a number of new mathematical
notions. The aim of the experiment was to try to understand better the discursive

2 Expectations are known also as prejudgements, prejudices, intimations or intuitions. The motif of meaniug
constructed through to-and-fro movement between what we expect and what we find goes back to Heidegger and
Gadamer. on the one hand. and to Bartlett, Piaget, and Vygotsky on the other hand. In the immediate context of
mathematics it became known as an issue of conjecturing vs. proving/refuting (Lakatos, 1976: Lampert. 1990). In the
present paper the focus is on linguistically induced expectations.
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construction of math objects and, more specifically, to expose the linguistic elements
of this mechanism. 1 designed the experiment in such a way as to see the "wheels of
the symbolism"” turning on their own. In other words, I strove to see how much can be
attained by a formal introduction of symbols, unsupported by a meaningful context.
This is why I chose a learning situation which by constructivist standards (in fact, by
any standards) must appear extremely "unfriendly”. 1 created a teaching material in
which: new symbols were introduced within a sterile context of forinal manipulations.
Examples of operations that could be performed on these symbols were the only
available source of their meaning. In this experiment, therefore, the new concept was
presented to the student as purely artificial, in Vygotskian sense, namely as one that
grows neither from a network of already constructed concepts, nor from its earlier
"spontaneous” version.3 Thus, while solving the problems that were presented to him
following a brief exposure to the examples, Dan could only rely on deductive
reasoning and on his linguistic associations.

The first in the series of the new mathematical notions to which Dan was exposed in
the course of the experiment is presented in Fig. 1. Since the intention of the study
was to observe an intra-mathematical production of meaning, the whole process began
with a formal introduction of a new signifier. In the experiment, I acted both as an
instructor and a researcher. | observed Dan closely during ten one-hour long meetings
while he was paving his way toward meaning.

Fig. 1: Introducing calculus of whole-numbers-pairs

During the present mecting we will define addition and multlphcatnon betwecen pairs of whole
numbers. Here arc a fow examples:

a.(2,3)-3.4)= (10, 12) b. (11,2)-(3,6) = (55.12)

c. (3,4)H2.5) = (23,20) d. (3,2)H1.7) =(37, 14)

1. Complete: (ab)(cd)= - (a,b)+(c.d)=

2. Compute:

a. (1,3)(2,5) b. (5,1)+(2,3) c. (3.5)%(1.5)

d. (2,15)(10,3) . (8.3)H0,5) f. (7.8)+(3,12)

g (5.4):(1,2) h. (8.15):(2,3) i. (11,9)-(5,3)

3. Complete: (a,b):(c,d) = (a,b)-(c,d) =

3 Although 1 prefer. as probably most of the readers do. to sec this "clinical” situation as purely theoretical and far
retnoved from the reality of today's classrooms, the sad truth is that any would recognize it as only too familiar;
even if it becomes more and more rare in schools, it is still quite frequent in colleges and at universities; I am also surc
that the conversation between Dan and nyself that resulted from my experimental script is likely be considered by
some people as a classical inathematical discourse -- the kind of discourse that is generated by those who use (0
transmit mathematics to others by lecturing or through professional mathematical texts.
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The new signifiers introduced during the first meeting were pairs of whole numbers

© which could be multiplied and added in certain well defined ways. A careful reader
will immediately recognize the pairs as another "representation” of rational numbers.
For Dan, however, the isomorphism with rational numbers remained unnoticed until
the third meeting. Therefore, for more than two hours he acted as a tabula rasa as far
as the new signifiers were concerned. It is important to stress that during the first two
meetings | refrained from referring to the pairs as "numbers”, lest this particular name
frame the discourse in ways that might distort the processes I wished to observe (
wanted Dan to arrive at certain conclusions from scratch, and not just because some
particular kinds of behavior could be expected from objects called numbers). The
dialogue between Dan and myself was held in Hebrew.

Fig. 2: Dan defines division between whole-numbers-pairs

[1] D: ... I have a problem here.

[2] A:?

[3]1 D: Am I supposed to try now?

[4] A: Do what you can. Write this down [points to item 2g], read it.

[5] D: OK, five coma two divided by... I think I will do the same [as in the case of |
muitiplication], only 1 will change to division instead of multiplication, 'caus the symbol
of operation here...

[6] A: What do you mean? What are you going to do?

[7] D: Five divided by one, coma, four divided by two, equals five coma two [writes:
(5,4):(1,2) = (/1. #42) = (5, 2)]. :

[8] A: OK, now I would like you to explain why you did what you did.

[9] D: My reason... In principle, 1 wouldn'... It is only because you gave.me these
operations... In fact, I wanted to remark already in the beginning that you shouldn't have
used the symbols of addition and multiplication ‘cause it is confusing.. . 'cause here
[points to the inside of brackets] we use multiplication as one operation, and here in the
equality [points to the multiplication sign appearing outside the brackets, between two
pairs] we used it for a different operation. But since you gave me this in that form, |
tried to solve it according to what I know.. that division is an inverse of multiplication.
So 1 just did reverse operations...

After Dan discovered the general formulas for addition and multiplication (problem 1
in Fig. 1) and applied them to a number of concrete cases (items a -- fin problem 2),
he unexpectedly came across the operation of division (g) which had not been
introduced to him, so far. The conversation that followed is presented in Fig. 2. As can
be seen, Dan did not have much difficulty with deciding how division should be
performed. Moreover, he was also very eloquent about the reasons for his decisions. In
(9], after criticizing the teacher (me) for using the familiar multiplication sign to denote
a non-standard kind of operation (between pairs), he stated that this was that very sign
which had made him act the way he did (see the last sentence in Fig. 2). In an
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exchange that took place a few minutes later, after Dan successfully verified his result
by multiplying (1,2) and (5, 2), he explicitly confirmed the role of sign-induced
expectations (Fig. 3, [25] and [27]- [29])).

It is noteworthy that Dan's decision was grounded exclusively in linguistically evoked
expectations. The appearance of signs with some previous meaning was the only
reason for the way in which he chose to broaden the use of the new signifiers. Rather
than stick to deduction (which, in this case, would leave him empty-handed, because
of the insufficiency of the information at hand), he decided to rely on intuition and
analogy. What he eventually created constituted a consistent whole. It was now up to
my reaction as a teacher to confirm his interpretation or try to change it. The role of
the social in the process of sign-building stands in full relief again. My instructional
interaction with Dan was an interplay of Dan's individual constructions and my
regulatory interventions.

Fig. 3: Dan explains why he defined division the way he did

[24] A: Listen, 1 defined the addition and the multiplication as I wanted. 1 had my
reasons to do it the way 1 did, but I will keep them to myself for now. The question is...
could you do the same when defining the division? Were you free to define it as you
wanted?

[25] D: No, I was restricted by my associations.

[26] A: What do you mean? What kind of associations?

[27] D: That this sign is a multiplication...

[28] A: And this one is division? ...

[29] D: Yes, and for all I know, they are related.

Expectations that do not work. After demonstrating the strength of linguistically
driven expectations, let me turn to the obvious pitfalls of projecting from old to new.
First, by activating old uses, the new signifiers may lead to beliefs that obstruct
creation of new meaning and create interdiscursive contradictions. Second, the
expectations may be superficial and fuzzy, so that their implications become difficult
to implement or to test.

The overprojection of old uses results in the phenomena known as misconceptions.
This may be best illustrated by the example of the notion of infinity. One may envision
the following scenario. A person first gets used to utterances of the form "Function f
grows infinitely”. This may well be the phrase through which "infinity" makes its first
appearance. At this point the new signifier has no existence of its own. The basic
meaningful units are the expressions "function f' and "grows infinitely". And then,
borrowing the template "Function f grows/tends to " from the discourse on
functions and numbers ("Function f grows/tends to a number yo (when x tends to
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xg)."), the leamer would say "Function f grows/tends to infinity" or even in the

symbolic form, "Function f grows/tends to «". Once inserted into a slot originally
meant for numbers, the word "infinity"” and the symbol "" have a tendency to sneak
into any place destined for numbers. Thus, since the phrase "Function f tends to a
number y(" may be translated into "7The limit of function f equals y(", it seems only

natural to say "7The limit of function f equals «". Here, because of a clear ontological
shift (from operational "grows infinitely" to the structural "equals (is) infinity"), the
name "infinity" and the symbol "" get a life of their own and start acting in language
as signifiers of an independently existing object. This is a perfect example of
hypostasis -- bringing a new mathematical object into existence just by a change in
the rules of language game. Up to now everything seems fine. However, the
expectation that o should fit any slot meant for numbers, if not restricted, would soon
produce statements creating intra-discursive anomalies and contradictions. The

common error ®/»=1 is a good example.

The fact that using an old template is a package deal finds its other expression in the
common expectation that whatever appears within expressions with arithmetic
operators, must also be applicable in utterances about quantities and magnitudes. Thus,
the fact that complex numbers cannot be ordered appears counterintuitive. The other
weakness of expectations -- the one resulting from their blurred inexact nature -- may
be illustrated with yet another episode taken from the study with Dan. I have just
shown how the appearance of known signs (operators ¢-> and ‘-’ ) enabled Dan to act
in a meaningful way in an unknown situation (division of pairs of whole numbers).
Dan's expectation that division should be "an inverse of multiplication" proved
sufficient as a basis for constructing a working definition of this new operation. As
may be seen from the excerpt in Fig. 4, this was not the case with the operation of
subtraction. The mention of subtraction (the appearance of the sign ‘-’) invoked the
phrase "Subtraction is the inverse of addition" but did not give precise directives about
the way the term "inverse” should be applied.

Fig. 4: Dan looks for a definition of subtraction -- first trial
[1] A: Good... now, would you, please, do i [(77,9)-(53,3)=]?
[2] D: OK, This is already more complicated. Would you mind if I made side notes?
[3] A: On the contrary, suit yourself.
[4] D: (a,d) minus (c,d) equals... This is a problem... a problem... there are... there are
much more possibilities for the inverse operation and I have to check them.
[5] A: Fine. Let's see. Continue.
[6] D: I will try to do [it]. Suppose, a equals... equals a divided by d minus b divided by

¢, coma, b divided by d [writes (%/g4 —b/c , b/d)], and I reverse all the operations that are

here.
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Dan's first impulse was to reverse anything that could be reversed -- all the operations
on numbers that appear in the formula for addition-of the pairs. After all, reversing the
component operations did work in the case of division. The only difficulty in the
present case was that there seemed to be more possibilities for combining different
reversals. By testing the suggestéd formula in a concrete case Dan soon realized that
the reversing of ali the operations did not work -- it did not result in a pair of whole
numbers which, when added to the subtrahend would produce the minuend. Thus, he
ventured a new conjecture, as presented in Fig. 5.

Fig. 5: Dan looks for a definition of subtraction -- second trial
[56] A: Yes, good. It seems that the conjecture did not prove itself, did it? What next?
Where were we?
[57] D: 1 have to derive the operation of subtraction.

[66] D: Now, I have an idea.

[67] A: A brilliant idea, of course...

[68] D: No, I am not sure. Now, when 1 have seen ... When I tried to perform this
operation here, 1 reversed all the signs and the right-hand side answer was correct, the
answer that did not require reversal of the operation of addition. So perhaps I only have
to reverse the multiplication sign in order to get...

[69] A: Namely?...

[70] D: Namely, that I will do (a,4) minus (c,d) equals a divided by d plus b d1v1ded by ¢
coma b divided by d. [writes (@3 +b/, b/,

[71] A: So the difference between this and what we had before is that we have now plus
instead of minus?
[72] D: Yes.

More often than not, the certain difficulty stemming from an inexact nature of
expectations is not an insurmountable obstacle. Substantial progress may be made
either in a gradual way, by a succession of trials and errors , or in one big step -- by
translating the anticipation into an algorithm for finding a working definition. This is
how Dan eventually overcame the present difficulty: He translated the claim about the-
relation between addition and subtraction into a symbolic statement ‘(@,b)-(c.d)= (x.))
iff (x,y)+(c,d)=(a.b)" and then, after applying the formula for addition, solved the
resulting equations for x and y.

Concluding remarks: The power of framing. In the clinically sterile setting, created
for the sake of the experiment, I hoped to be able to find out how much can be
achieved through "symbol games" alone, unsupported by links to the previous
knowledge or by a reference to student's needs. It was Dan's job to build these links
for himself while it was my job as a teacher-researcher to provide him with a
regulatory feed-back. Dan’s later success in forging the missing intra- and inter-
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discursive links in these extremely unfavorable circumstances was truly impressive®. In
the course of the following few meetings he discovered the number-like quality of the
pairs of numbers and, eventually, identified them as ‘another representation of rational
numbers’. This meant, among others, an immediate re-connection of the mathematical
discourse to the ‘real world discourse’. It also gave Dan a clear sense of the objects to
which the symbols were supposed to refer. ’

Thus, the extremely important point to stress here is the issue of context. Whether
“real-life" or purely mathematical, it is the context which makes growing ideas
meaningful and helps in establishing object mediation. Thus, looking at what has been
achieved by Dan in the artificially decontextualized situation, one cannot help
wondering at the power of linguistic framing. This centrally important mechanism is
certainly something to be remembered by mathematics teachers and investigated
further by researchers.
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THEORY OF GLOBAL AND LOCAL COHERENCE AND
APPLICATIONS TO GEOMETRY
Atara Shriki and Ehud Bar-On

Department of Education in Technology and Science, Technion - Israel Institute of Technology

Abstract

Consider the following statement: “A square with two parallel sides and two equal sides is a
parallelogram”. In the study described hereby many students claimed the statement was true.
Was it because they didn’t know anything about equilateral trapezoid? In fact, they knew
everything about it, but on the moment of considering the statement they didn't integrate all
the pieces of knowledge they hold in their “knowledge base". Is it possible that people, while
relating to statements, will not consider all the knowledge they hold regarding the statement,
and not act like “‘rational thinkers”? And if so. what is the reason to that phenomena?. In a
research conducted to test this issue one of the basic assumptions was that there is a
connection between the limited capacity of the Short Term Memory and the ability to
integrate ail the pieces of relevant knowledge. The theory that was applied for this matter

was The Theory of Global and Local Coherence. which will be described later in this paper.

1. Background
1.1 Geometry Studies in School

Many researches have been engaged in trying to find out what reasons

O

cause students to fail, especially in geometry. In the research literature
there are two main categories of explanations:

A. Cognitive Difficulties - Students have difficulties in: a. arranging their
thoughts and building logical arguments (Dreyfus & Hadas, 1987); b.
dealing with deduction and aspects concerning formal proves (e.g.
Schoenfeld, 1985); c. understanding the necessity of writing a formal proof
(e.g. Hanna, 1983). '

B. Unsuitable Teaching Methods - a. According to the Van-Hiele

‘Theory, teachers tend to teach in a higher Van-Hiele level than their
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students are capable to (e.g. Usiskin, 1982); b. Teachers tend not to use
discovery methods. They simply let their students prove known
statements, and thus prevent them from engaging in discovering theories
and statements by themselves (e.g. Schoenfeld, 1985). )
Following those two categories we looked for answers to questions like -
Why do students have cognitive difficulties? Why can’t they understand
the meaning and the necessity of formal proof? Why do they have
difficulties in building logical arguments? Why, after so many years of
studying geometry they are not reaching a high Van-Hiele level? Is it more
difficult to distinguish between “givens” and “what should be proved”
when geometrical objects are involved? Are the objects concerning
geometry more difficult to grasp then objects from other ﬁelds of
mathematics? Are the difficulties rooted in the relationships between the
geometrical objects? And so forth. In our research we tried .to study those
questions and others from a different angle, one that places the structure of
memory in it’s core - The Theory of Global and Local Coherence.
1.2. The Theory of Information Processing and the memory structure

" According to the Theory of Information Processing (e.g. Sprinthall &
Sprinthall, 1990) there are three main memory units: Sensory Memory,
Short Term Memory (STM) and Long Term Memory (LTM).
Remembering things means activating (retrieving) the stored information in
the LTM and éending it to the STM. The STM can retain information for
few seconds (e.g. Broadbent, 1984) while the LTM can retain it during the
whole lifetime. The STM has a limited capacity: it can code and hold 7 £2
distinguished items (Miller, 1956) simultaneously while there are not
known limitations regarding the capacity of the LTM (e.g. Craik, 1990). In
this research the information storage in the LTM was represented as an

Associative Network (AN) consisting of nodes. (concepts) and arches
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(connections ~ between the nodes) (Anderson, 1985). Transferring
information from the LTM to the STM means activating the nodes in the
LTM. In the LTM information spreads from node to node in the AN in
accordance with the connections between them. The knowledge is
representing in connected information units. Their configuration and
structure in the AN determine whether or not one is able to use this
knowledge efficiently (Chi & Koeske, 1983). A useful structure is a
coherent one. The notion of coherence relates to the entire structure
(global coherence - GC) and to it’s sub-structures (local coherence - LC).
1.3. Theory of Global and Local Coherence (Global Coherence View -
GCV, Local Coherence View - LCV)

Given the.capacity limitations of the STM, it is assumed that during an
execution of a mental operation one is not always able to connect at a
given moment all the relevant information that is stored in the LTM The
consequent is a “competition” between the relevant possible elements, that
ends with choosing some elements in accordance with the view (a group of
elements) that was assumed in that moment (Bar-On, 1993). The theory
states that the teﬁdency is to look for a lack of contradiction within the
view (LC) rather than for a lack of contradiction between possible views
(GC). One; will not look for the best alternative but will choose the one
that first occurs to him and looks like a coherent one at that time. This
assumption stands in contradiction to the assumption that people tend to
think in a GC (or “rationally”’) manner. The basic questions that raise from
the theory concerns the number of information units (NTU) which could be’
considered simultaneously, the way they are chosen, the process of
integrating them to a coherent view, etc. Following the AN model, the way
concepts are connected to each other determines the rate of GC and LC of

a structure. The hierarchy and patterns of relation between sub-structures

P 4 - 154



E

determines the GC, while the interrelation within the sub-structure and the

rate of their sharing attributes determines the LC (Chi et al_, 1989).

2. The Research
2.1. Assumptions - Mistakes students make in relating to geometrical

statements are not necessarily due to lack of knowledge. Because of the

- STM limited capacity, the tendency is to connect between elements that

produce a LCV. Geometry, inherently, requires a GCV. Theorems,
definitions, connections, laws of deduction, etc., have to be taken under
consideration simultaneously. The type of connections between the
elements and the structures within the AN will determine the ability to
perform an integration of the existing knowledge, and will determine
which elements shall be taken under consideration.

2.2. Research questions (we shall relate here only to two of them):

1. Using the AN, how can the reactions of students be interpreted
concerning: a. Factors connected to the reaction time (RT) toward
statements; b. The amount of elements (NIU) considered simultaneously
for relating to a statement, c. The types of connections between the
element students choose to consider simultaneously: Associative
connections (AC); Attribute connections (AtC); The rate of the elements’
activation; The rate of coherency of the structures that contain them.

2. What factors differentiate between correct and wrong answers?

2.3. Subjects

In the research participated subjects from 9th, 10th and 11th grade, from
all study levels. The subjects came from 4 large schools in northern Israel.
2.4. Phases .

Phase A: Preliminary research - 321 students answered a questionnaire:
In it’s first part they had to reply “yes” or “no” to one geometrical
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statement congeming squares within 30 seconds (writing the first answer
that occur in their minds). There were 10 different statement. In it’s second
part the students were asked leading questions, and then had to reconsider
the original statement. The aim of this stagebwas primarily to test the effect
of leading questions on the coherency of answers.

Phase B: Case studies - 23 subjects were interviewed and videotaped.
Each interview was built from 6 phases: 1. Drawing all the known squares;
2. Grouping the squares by various criteria; 3. Putting the squa;es into
families and sub-families; 4. Writing all that is known about each square
(referred to as “knowledge base”- KB);, 5. Relating to ten statements from
various types about squares (five true and five false statements); 6. In
cases the subjects gave wrong answer, leading questions were given, until
the answer was correct.

Phase C: Analyzing the interviews - a. Phases 1 - 4 were used for
building the subject’s AN; b. The Analysis of answers given in phase 5
was based on the AN. Othe'r parameters used for the analysis were - RT,
NIU considered, the rate of information activation, and the rate of the
structure coherency.

Phase D: Summarizing the Findings: Tools and Methods

A. The Model for Building the AN - The model of the AN that was used

“for the research purposes was based on the AN described by Chi &

Koeske (1983). The AN was composed from three components: 1. Object-
Object Connections (AC); 2. Object - Attributes Connections; 3.
Classification of the relevant squares into families.

B. Activation Measurements - The activation measurements were based
on a computer program called “iac” (Rumelhart & McLelland, 1986).

C. Coherency Measurements -The rate of coherenéy the subjects

demonstrated was measured using a computer program called “Convince
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Me”. The program was developed by Ranny M. & Schunk P. based on a
theory called “Theory of Explanatory Coherence” (Thagard, 1990). The
theory relates to the way people decide how much they believe in an

explanation they give or a statement they relate to.

3. Summary of the results and discussion

One of the main findings was a reassurance of the basic assumptions of the
Theory of Global and Local Coherence: answers of students can be
characterized as having a LCV and mistakes are a result of a lack of GCV.
In every case of giving a wrong answer the subjects actually held the
required knowledge in their “KB”, but they failed to integrate all the
knowledge components. The results of this research show that the
existence of structures in the AN that contain all the required elements and
connections, especially attribute ones, will enable giving an answer from a
GCV, and thus reduce the RT towards a statement. The low RT is a
consequence of the information’s access rate, and of the fact that there is
no need to scan numerous structures in the AN. Thus, a focal answer, one
that doesn’t force a trail passed through various structures, causes the
consideration of fewer NIU.

Considering that all the findings are beyond the scope of this paper, we
shall briefly summarize only those who have possible utilization in
teaching and learning theories:

A. AtC are more meanings then AC regarding the consideration of
geometrical statements. The conclusion is that while teaching geometry the
teacher must establish the knowledge relevant to AtC between the various
geometrical objects. "

B. RT, NIU considered and the number of connections between squares

were among the factors that differentiate between correct and wrong
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answers. It was found that correct answers involved lower RT and NIU
considered then wrong answers, and greater number of connections in the
AN. The fact that correct answers are characterized by fewer NIU
considered can be related to the existence of a “special mechanism” that
selects between IU. The conclusion is that in spite of the positive
correlation that was found between number of connections in the AN and
the chance that the answer will be correct, still in average cofrect answers
carried fewer NIU. That means that not .in every condition
multiconnections would guarantee right answer. Student should learn how
to consider those connections. Many teachers tend to encourage their’
student to produce long answers assuming that the more there are
information units the better the student knows the subject. The results of
this research point to the fact that assisting students to built their own
“filter mechanism” would lead to better results.

C. Teachers should also assist their students “building” the AN structures.
On one hand it was found that LCV helped reduciﬂg the RT, and on the
other hand lower RT was tied to correct answers. It can be deduced that
the reduction in time stemmed from the student’s ability to identify clearly
and quickly the proper structure, the one that contains all the relevant
information. That is to say - the student can consider the structure locally,
since this well establishéd structure already contains all the information
necessary for relating to the statement. Such a structure is in fact
producing a view which is global in its nature, because having all the
required connection in it saves the time wasted on searching the required
information. Teachers can assist their students built AN well equipped in
their hierarchiqal structures and relevant cgnnectiéns and thus influence

the ability to cope with the various objects of geometry.
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GENERATING THEORETICAL ACCOUNTS OF MATHEMATICS
TEACHERS’ PRACTICES

Martin A. Simon and Ron Tzur

The Pennsylvania State University

Abstract. This paper articulates a particular theoretical and methodological
perspective that can play a key role in studying mathematics teacher development.
This perspective focuses on generating theoretical accounts of teachers’
mathematics teaching practices as they take part in current mathematics education
reform efforts. These accounts provide an alternative to studies that focus on
teachers’ deficits and to teachers’ own accounts of their practice. A description of
and rationale for the generation of theoretical accounts of teachers’ practice are
presented followed by an example drawn from one account that the authors
developed. '

Background

This paper articulates how a particular theoretical and methodological perspective
might contribute to a research-based understanding of teacher development
necessary for advancing the current mathematics education reform agenda. The
reform implies that teachers must develop practices that differ greatly from what
has characterized their mathematics teaching and learning in the past. We
understand a teacher’s practice to include not only everything a teacher does that
contributes to her teaching (planning, assessing, interacting with students), but also
everything the teacher thinks about, knows, and believes about what she does. In
addition, the teacher’s goals, intuitions, skills, and feelings about what she does are
part of the practice. Thus, we see the teacher’s practice as a conglomerate that
cannot be understood by looking at parts split off from the whole (i.e., looking only
at beliefs, or questioning, or mathematical knowledge, etc.).

- Educating experienced teachers to transform their teaching practices to be more

consistent with current reform principles places significant demands on the
mathematics education research-community. Mathematics educators need research-
based understanding of how teachers develop from traditional teachers toward
teachers who contribute to and implement the mathematics education reform agenda
in order to design and implement successful learning opportunities for teachers.
Our current research,’ which includes case studies of teachers, is based in part on
the notion that understanding teacher development involves generating
comprehensive theoretical accounts of teachers’ practice. We continually generate
and revise our theoretical accounts by inferring from data collected through
observing the teacher’s practice and interviewing the teacher about specific aspects

N
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of what is observed. (A detailed account of our methodology is found in Simon, in
press). These accounts represent our commitment to articulate how the teacher
organizes her experiential reality with respect to teaching. In other words, we
strive to create a coherent story of the teacher's practice by explaining the
teacher’s perspective from the researcher’s perspective.

This last phrase is the key because it distinguishes our work from both deficit
studies of teachers and from work in which the teacher articulates her own
perspective (cf., Schifter, 1996). Thinking about “the teacher’s perspective from
the researcher’s perspective” involves a subtle, but important distinction. The
researchers attempt to understand and articulate teachers’ approach to the problems
of practice: how and what the teachers perceive and how they make sense of, think
about, and respond to the situations as they perceive them. However, the result may
be very different from what the teachers would say about their own practices. The
researchers structure their accounts of the teachers’ practices using particular
conceptual lenses (often not shared by the teacher) that define their focus and guide
their interpretations.

Theoretical accounts of a teacher’s practice generated at different points in time
contribute to analysis of transformation/development of a teacher’s practice. In
our research, these accounts provide the context for understanding a teacher’s
response to our interactions with the teacher that are intended to promote
development.

Rationale for Developing Accounts of Teachers’ Practice

Several considerations have contributed to our perspective that accounting for
teachers’ practice can make an important contribution to understanding teacher
development. Although the restrictions of language require them to be listed
sequentially, it is the collective impact of these considerations that have led us to our
current perspective. ’

1. Several research projects have successfully promoted changes in teachers’
knowledge, although expected concomitant changes in teachers’ practice did not
result (c.f., Wilcox, Schram, Lappan, & Lanier, 1991; Simon & Mazza, 1993). We
suggest that not only are multiple areas of teacher knowledge necessary to support
new forms of practice (e.g., knowledge of and about mathematics, knowledge of
students’ learning, knowledge of curriculum design and adaptation), but that growth
in particular areas of knowledge depends on growth in other areas. For example, a
teacher’s growth in understanding how students develop concepts of fractions may
be limited by her understanding of the mathematical concepts herself, and by her
understanding of what it means to understand and do mathematics. Furthermore, if
'she views teaching as getting students to respond to particular problems in
particular ways, her inquiry into students’ thinking may be limited to how students’
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thinking differs from what she is attempting to elicit. Developing accounts of the
teacher’s practice has the potential to enhance understanding of the role of the
teacher’s knowledge in her practice and of the processes involved in the growth of
interrelated areas of teacher knowledge.

2. Deficit views of teachers (articulating what they do not know or understand) are
insufficient for understanding teacher development, because such views provide no
insight into how teachers assimilate new experience, how they define their roles, or
how they view students and mathematics. Rather, accounts that characterize the
practice of thinking, feeling, acting teachers are needed in order to understand the
impact of particular professional development opportunities on teachers’ practice.

3. Studies of the mathematical development of students provide a useful analogy to
studies of the professional development of teachers. The studies that have provided
the most insight into learners’ mathematical thinking have ‘characterized the
particular ways that learners at different stages think about particular mathematical
ideas (cf., Steffe, 1992; Fischbein, Deri, Nello, & Marino, 1985). In work of this
type, researchers often need to postulate new constructs to account for the
mathematical activity of the observed students. This is necessary because existing
ways of describing the concepts of mathematically sophisticated adults are often not
appropriate for describing the students’ mathematics. In this analogous context, we
see that mathematics educators, who bring rich mathematical understandings to bear
upon their research, characterize the mathematics of students in ways that the
students themselves could not. The mathematics educators’ understandings play a
critical role in inferring the mathematics of students, in seeing the mathematics of
students as rational and coherent, and in devising ways to promote students’ learning
through instruction. )

We use this analogy to think about teacher thinking, practice, and development.

Our goal is to account for the development of mathematics teachers in ways that
capture key features of their practice. The sophistication of the perspectives that

are brought by the researchers to these analyses are important to the effectiveness of
the account that is constructed. However, as in the analogous situation of studying
the mathematics of students, researchers may need to develop new constructs to
account for the teachers’ practice, constructs that are not part of their previous
analysis of traditional teaching or of reform teaching.

Developing an Account of Practice: One Example

Our work to date suggests that teachers seem to interpret the reform as
discouraging a telling and showing approach to mathematics teaching.
Consequently, they face the problem of developing an alternative to this deeply
entrenched approach. Looking at how teachers address this problem has proved
useful in each of our studies of a teacher in transition. Thus, it has become part of
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our conceptual framework, focusing our inquiry and providing a level of
commensurability that structures our attempts to look across case studies. We
discuss our attempts to develop an understanding of Sally's solution to this problem
as an example of our work in generating theoretical accounts of teachers' practice.

Based on transcripts of our videotapes of Sally's mathematics teaching in her first-
grade class and audiotapes of interviews with Sally regarding the observed lessons,
we began a line-by-line analysis. We used our perspectives to understand Sally's
mathematics teaching from her perspective. Our goal in discussing this example is
to illustrate our theoretical and methodological considerations, not to convince the
reader of the appropriateness of our interpretation, thus the absence of actual
transcript data.

From the outset, it was clear that Sally did not use a traditional “show and tell”
approach. Rather, she tended to begin her lessons with open-ended questions or
tasks. She seemed to be committed to teaching for understanding. She involved the
students in hands-on tasks, encouraged collaboration, and questioned them about
their understandings. On the other hand, her focus seemed to be on getting the
students to do or say what she was looking for, rather than on evidence of their
conceptualization. In short, we thought of her teaching as demonstrating aspects of
two different teaching paradigms, traditional and reform.

To characterize Sally's teaching practice this way was rot particularly helpful for
several reasons. First, we found ourselves repeatedly struggling over whether her
focus was procedural or conceptual. 'Neither of these terms seemed to capture what’
we were observing. Second, all teachers might be characterized as demonstrating
aspects of traditional and reform teaching. Thus, this characterization shed no light
on Sally's specific solution to the pedagogical problems that she faced as a teacher in
transition. Finally, such a characterization fails to incorporate an important
principle of research on teaching, that every teacher’s approach is rationale and
coherent from his or her perspective. Therefore, we struggled to generate an
alternative account of Sally's practice that was consistent with this principle.

We began to make progress when we examined the inappropriateness of our terms
"conceptual” and "procedural” for characterizing Sally's focus. As we observed and
re-observed her interactions with the children, we noticed that she closely
monitored what they were doing to solve the tasks and questioned them to evaluate
their understanding of what they were doing. By generating a new construct,
"doing-with-understanding," we were able to break away from our previous ways
of categorizing teaching. We designated this construct to imply a unified approach,
not a combination of separate foci. The notion of doing-with-understanding (DWU)
continued to be explicated as we worked with additional data from Sally's practice.

We came to understand Sally's DWU approach as an emphasis on getting students to
successfully perform certain kinds of activities while demonstrating understanding,

s q
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usually by providing particular types of verbal descriptions of their activity. Sally
spent most of her class time monitoring students, individually or in small groups, to
see if they were successfully demonstrating the competence that she was looking for
and if they could provide the verbalizations that she had identified as being evidence
of understanding. When students were not able to perform in these ways, she
intervened in an attempt to encourage them to alter their responses. These
interventions were often questions that were narrower and more leading and use of
examples (often from other students’” work) of appropriate responses to the tasks or
questions.

We further came to understand Sally’s teaching as guided by a set of reform
strategies that she expected would result in students DWU. These included
beginning with broad open-ended questions or tasks in hope that the students would
generate the desired responses with little guidance from her, encouraging or
requiring use of manipulatives and graphical representations’, monitoring students’
work regularly and modifying her teaching based on students’ responses, and
demanding verbal explanations of their solutions.

In summary, the creation of the construct DWU was an attempt to recognize the
coherence in Sally’s practice. This practice incorporated many of the strategies that
characterize the reform yet contrasted with our notion of reform teaching in her
focus on student performance as opposed to our focus on including teacher’s
inferences regarding students’ underlying conceptual structures and operations.

Our theoretical account of Sally’s practice is intended to characterize how she
attempted to advance children’s learning at one point in time..

Discussion

This glimpse of our attempts to generate a theoretical account of Sally’s practice
demonstrates an important tension for the researchers. On one hand, our ability to
“notice” important aspects of Sally’s practice was directly related to the perspectives
that we were able to bring to bear on the analysis of data. On the other hand,
coming to an understanding of Sally’s perspective (through the lenses of our

perspectives) required us to go beyond the limitations of our extant concepts, a step

that necessitated a conceptual reorganization on our part in order to “learn” Sally’s
perspective.

We believe that generating theoretical accounts of teachers’ practice has the
potential to contribute to understanding of mathematics teacher development in
several ways:

1. These accounts can shed light on'the nature of the pedagogical problems
encountered by teachers in transition and of the pedagogical solutions that they
develop.
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2. These accounts contribute to understanding the meaning that teachers attribute to
various aspects of the mathematics education reform and for the professional
development experiences in which they participate.

3. These accounts provide a basis for professional development interventions,
including those that are part of research on mathematics teacher development.

4. These accounts can lead to hypotheses of landmarks of mathematics teacher
development from traditional to reform teaching.

! This research is part of the Mathematics Development (MTD) Project, supported
by the National Science Foundation under grant No. RED-9600023. The opinions
expressed do not necessarily reflect the views of the Foundation.

? Sally seemed to assume that “seeing” what was being represented was a result of
using the physical and graphic representations.
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Abstract
We discuss an important breakthrough for us in our understanding of the
meaning of ‘understanding’ in mathematics education. We provide a
background to this discovery, the catalyst for the breakthrough and a
concise explanation of our new definition of the term within our existing
theory of natural, conflicting and alien experiences. In discussing the
consequences of the definition - both in the theoretical terms of internal
characteristics and external manifestation, and some early practical
consequences for a teacher attempting to model a learner’s understanding -
we begin to describe a more comprehensive theory of understanding.

Much of our work during the past five years has been devoted to developing a
theory of learning in which we identify learning experiences as either natural,
conflicting and alien, to which we postulate learners will respond in different ways
(Duffin and Simpson, 1993). We have used this theory to analyse a number of
learning incidents encountered in our work. In the course of such analyses we
found that the word understanding often entered the discussion and eventually we
felt compelled to seek a definition of that word which would fit our theory and
enable us to further our work. The quest for such a definition has occupied us now
for around three and a half years and we will use this paper to explore our current
position in that quest. :

The Search for Understanding

Our search has fallen into three phases during each of which something emerged
which has been of considerable significance for us and, though subject to
modification as the work has progressed, each has in itself contributed to our
present position.

The first phase was one we call the theoretic phase because, contrary to our usual
practice, we were not looking at critical incidents from our experience as teachers,
learners and investigators of learning but were examining the affective aspects of
understanding, using our own internal perceptions as well as those of colleagues
with whom we talked. These we called the internal characteristics of
understanding.
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During this phase we did a preliminary literature search from which we discerned
two apparently discrete approaches to this important concept amongst researchers in
the field. There were those who appeared to associate understanding with the
ability to do or having a set of skills, among whom we were somewhat surprised to
find Gagné (1970), while others (detailed in Byers (1980) including Skemp (1976),
Poincaré (1908)) appeared to demand more than domg and knowing as criteria for
the concept. .

In line with our own theory, we found ourselves rejecting and ignoring those whose
perceptions seemed alien to our own and were happier to align ourselves with those
who expected more for postulating the presence of understanding in a learner. It is
significant for us that later developments forced us to return to this dichotomy to
reassess our position in relation to the literature.

With our theory in mind, and our sense of affinity with some of the literature and
the ideas of colleagues with whom we shared our developing perceptions, we
arrived at our first definition of understanding:

Understanding is the awareness of internal mental structures

Having achieved this first definition our attention was temporarily diverted from
our search until its second phase overtook us when two incidents occurred in quick
succession and drew us back to our quest. These incidents caught our attention
because it seemed to us that one of them showed a learner with a very good
understanding while the other seemed, at least on first sight, to demonstrate total
confusion and lack of understanding.

Our attention was re-engaged by these incidents which we then tried to analyse in
the light of our definition. In the incidents, one learner tried and failed to carry out
a task while the other, who confessed to having forgotten what was wanted, was
able to recreate the processes successfully by calling on connections he had
available.

It was this recognition that, while both were about learners who had forgotten
something, only one was successful in recapturing what had been forgotten, which
was the catalyst to further investigation. It was clear to us that the success came
from awareness of appropriate connections on the part of one learner, precisely in
accordance with our definition. The failure appeared to come because of a sense we
got that the other learner was merely trying to recall the steps of a procedure
without using any significant connections that we might interpret as an
understanding of the procedure.

From this we used the two words reconstructing and reproducing as depicting,
respectively, the actions of those who do or who do not understand. It seemed to us
that the learner who did not understand could only attempt to reproduce a forgotten
procedure, while the one who did was able, despite lack of recall, to reconstruct
what was wanted by using awareness of appropriate connections in order to do so.
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. After our breakthrough, the notion of reproduction vs. reconstruction remains an

important facet of our theory.

Moreover, the case of the learner who did understand confirmed one of the internal
characteristics we had identified: that if you understand you do not need to
remember all the details of something. At the same time, our attention was drawn
back to Poincaré who associated understanding with creativity, an element we felt
we had now identified in this process of reconstruction.

It was during this phase also that we began to consider ways in which teachers
might be able to recognise understanding in their students: we began to consider
what we came to call external manifestations (or indicators) of the internal
characteristics we had identified. We saw these two elements as important to our
developing work though, as in the case of reproduction and reconstruction, later
work was to modify and change our perception of the ways in which these elements
are part of the concept of understanding.

It was at this point that we entered what was to be our third phase before we came
to our present position. We felt we were now ready to write up our work on
understanding, our aim at the beginning of our quest. We had identified internal
characteristics of understanding and had some tentative ideas about how a teacher
might perceive learners’ actions in order to determine something about their state
of understanding.

But the article failed to materialise however hard we tried to put it together.
Admittedly we were again temporarily diverted to another problem associated with
our theory of learning but this was not sufficient to explain our inability, over a
period of at least two years, to write about our definition of understanding related
to our theory of learning.

We returned to the literature. Earlier our attention had been drawn to three
writers of whom Nickerson (1985) had provided us with an extension of our
perception of understanding and its consequences; on this occasion we decided to
concentrate on the other two: Sierpinska (1990) and Mason (1994).

From the new look at Mason arose a paper on methodology; from the new look at
Sierpinska came the breakthrough which brought us to the point at which we now
stand.

A Breakthrough

.In reading Sierpinska (1990) initially, we had been puzzled by her question “is

understanding an act, an emotional experience, an intellectual process or a way of
knowing?”. In our existing théory we saw understanding as a state and became
puzzled when Sierpinska decided to work with the notion of understanding as an
act. As we returned to work on understanding again, we went back to Sierpinska’s
question and looked for clarification in her more substantial book on the topic
(Sierpinska, 1994).
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We had also, however, begun to see a problem with our existing theory: there
seemed (o be a ‘hole’ between the notion of internal characteristics and external
manifestations - a ‘hole’, though we were unaware of it at the time, that came about
because of the tension between seeing characteristics as static and manifestations as
dynamic. This, coupled with the confusion about whether understanding was an act,
a state or a process, left us ripe for the breakthrough.

This came with the sudden realisation that we could interpret Sierpinska’s notion of
an act of understanding and that it might be a vital idea for our theory. We
interpreted her ‘act’ as the use of connections to solve a problem™. This seemed to
us to be a vital part of our theory - it is only in ‘enacting’ understanding that a
learner uses their connections in such a way that a teacher can make some
judgement about the understanding they might have.

This led us to an important partial analogy with the naive view of potential and
kinetic energy. In the case of a ball with potential energy, that energy cannot be
directly seen. Indeed, even in the case of a ball which is falling and has kinetic
energy, we still cannot see that energy: we can only infer that the ball has energy
from the observation that it is moving and, only from that can we infer that the ball .
began with some potential energy. Similarly, unless understanding is enacted, we
have no way of inferring anything about the level of understanding that a learner
has and, even when the learner does something (such as gives an explanation, or
solves a problem) we cannot see the understanding being enacted, we only interpret
our observations as the use of understanding and from that infer that the learner
began from some level of understanding.

This analogy, partial as it is, led us to think about an analogue to giving a ball
potential by lifting it off the ground. That is, what might we mean by building
understanding. Thus we were led to a three component theory.

Three Components of Understanding

We named the three components of understanding building, having and enacting.
The first of these is the process of the formation of the internal mental structures,
the connections that constitute the breadth and depth of understanding that a learner
has at any particular time. The mechanisms by which these connections are formed
(or broken) belong more properly to the underlying theory of responding to
natural, conflicting and alien experiences (detailed in Duffin and Simpson, 1993). It
is important to note, however. that our new theory retains a notion of breadth and
depth of understanding: in the former case, someone may have a number of
connections from the notion under consideration, while in the latter the learner may
be able to form long chains of connections from that single concept. This notion,
originally from Nickerson, goes beyond the questions of whether understanding is

* It is important 1o note here that we now belicve our breakth rough came [vom misreading Sierpinska.
We now interpret her ‘act’ ol understanding as what we will come to call *building understanding’
and that her notion of overcoming epistemological obstacles is what we have previously called
resolving a conflict (Dultin and Simpson, 1993)
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an ‘all or nothing’ concept or whether there is a single dimensional continuum of
understanding. Instead we can talk of learners who have breadth - perhaps
evidenced by the number of different starting points they have access to in solving a
problem - or depth - perhaps shown by the ways in which they can unpack each step
in an argument they produce.

The second component we term having. This is the state of connections at any
particular time. A learner may only be enacting or building single strands of their
understanding when they are working, or indeed they may not be enacting or

. building any part of their understanding if they are passive (or if, as we shall

suggest later, they are reproducing-a response). However, in determining what
understanding learners have at a particular moment, we are interested in the totality
of the connections available to them. As we shall see however, modelling the
understanding that a learner has is an indirect and complex thing.

The third component, enacting, is one which we will suggest has the most to offer
in terms of enabling a teacher to model a learner’s understanding. By enacting we
mean the use of the connections available in the moment to solve a problem or
construct a response to a question.

Note that these three components can bring us back to our problem with
Sierpinska’s original question: whether understanding is an act, a state or a process.
Our theory suggests that there are aspects of all three: an ongoing process.of the
development of connections (building), a state of the available connections at a
given time (having) and the act of using the connections in response to a problem
(enacting).

Internal and External Aspects of the Three Components

Much of the development of our original theory came in deciding what internal and
external characteristics could be discerned when someone has some understanding.
In doing this we developed two questions which we asked of ourselves and of
colleagues (an approach which fits the methodology we have developed: looking at
ourselves and others ‘as if from inside’ and ourselves and others ‘as if from outside’
(Mason, 1987), detailed in (Duffin and Simpson, 1996)). These two questions can be
modified to determine what we might mean by the internal and external aspects of
our new theory.

We can try to detel mine internal characteristics by asking ourselves and others the
questions:

How do I feel when I [am building]/[have]/[enact] my understanding?

and we can try to determine the external manifestations by asking ourselves and

“teachers the questions:

What would 1 expect to be able to see in my students if they [are
building]/[have]/[are enacting] their understanding?

This has led us to begin to build a matrix of these possibilities (figure 1.)
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mental structure
component building having enacting
[noticing?] feeling able to do
internal comfortable, feel problems, able to
characteristics able to forget (and |explain, able to see
reconstruct later) in other contexts,
able to derive
consequences
external eyes lighting up, NONE doing™
manifestations ‘Ahal’
figure |

We suggest that the internal characteristics of building an understanding may be
hard to determine - that the focus of the learner may be so firmly on the process of
forming connections that they cannot simultaneously notice what is happening to
themselves (though perhaps this is at the heart of the discipline of noticing that
Mason (1994) has developed). What may be accessible to a teacher, however, is the
reflex reactions to making a breakthrough - a lighting up of the eyes or other signs
of excitement (or relief!). .

The internal characteristics of having may be more accessible. We may feel at ease
with a topic if we, feel we have sufficient understanding to be able to cope with the
kinds of situations we expect to encounter. We may even feel that if we forget the
details of an algorithm (for example) we can reconstruct it using our available
connections without much difficulty. However, we.suggest (as our earlier energy
analogy indicated) there can be no external manifestations of having understanding:
external manifestations can only come when something is being done and the state
of having understanding is a passive one. The most important implication of this is
that in trying to_ model the understanding that a learner has, a teacher cannot use
direct manifestations: they can only model from the available manifestations - those
of building or enacting. '

Enacting can have a number of internal characteristics. A learner may see
themselves using their connections to explain something to someone else, derive a
consequence, or to see an aspect of a concept in a new context. These internal
enactments manifest themselves in a number of ways - speech, writing, drawing -
all of which we put under the heading of ‘doing’. It is in the interpretation of the
actions of a learner that the crux of the problem of a teacher’s modelling of
understanding lies.

* It is interesting 10 note that we now see ‘doing” as so important in modeliing understanding, when
we initially rejected Gagnd's use of it - but by ‘doing” we mean any form of action which may be
interpreted by the teacher, not just the completion of routine tasks; indeed, as we shall suggest, it is
routine tasks (which may be casily reproduced) which are the least useful in helping a teacher model
understanding.
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It is important to note that the analysis of understanding that we give - in three
components with internal characteristics and external manifestations - is not meant
to indicate that these are discrete elements in learning. We do not suggest that there
is a period of building, followed by a period of having, followed by a period of
enacting. Indeed, it is likely that in solving a substantial problem we use some
recalled facts, enact some understanding, get stuck, find conflicts and resolve them
by building new connections, enact those new connections, bring in more recalled
ideas and so on; all this possibly taking place in a very short space of time. .

Modelling Understanding

In trying to make some judgement about a learner’s understanding, a teacher can
only work from what they observe and from their interpretation of those
observations: that is, teachers mode! the understanding of pupils by building an
understanding of it. The observations that are most readily accessible are the
external manifestations of enactment, which has two associated problems: an
enactment is a single use of a single pathway of connections (so does not represent
the totality of available connections) and a learner’s solution may not involve them
in enacting their understanding if, instead, they can reproduce an answer.

The former problem seems to confirm that the act of modelling understanding is a
long term one. A teacher builds and modifies their model of pupils’ understanding
from repeated interpretations of numerous observations of what the pupils do, and
can provide questions and directions to the pupil to encourage them to enact their
understanding in as many different ways as possible.

The issue of reproduction vs. reconstruction is a more substantial one for us. We
suggest that a person will reproduce a response if they can (even if they are quite
capable of reconstructing one, which involves enacting their understanding by using
their available connections) since this involves considerably less effort, as implied
by Bartlett (1932). Thus in trying to model understanding, a teacher may be misled
into thinking that a solution to a problem is one obtained by enacting understanding,
but which may instead have been reproduced from memory (whether or not any
understanding lies behind it). Even if someone cannot simply reproduce an answer,
a further difficulty may come (rom a learner’s awareness in the moment: while a
learner may have the necessary connections to solve a problem, at a particular
moment, in response Lo a particular situation, they may not have an awareness of
those connections and thus may not be able to enact their understanding.

Both of these ideas lead us to some practical consequences for a teacher trying to
model their pupils’ understanding:

. The teacher needs to be aware that modelling understanding is a long-
term and indirect process in which they need to build a model from a
large number of questions which allow a range of broader and deeper
understandings to be enacted. :
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. To avoid the problem of reproduction, the teacher might use questions
which make any reproduction more obvious: requests to explain,
questions set in unusual contexts or questions which ask learners to
derive consequences (this latter came from Nickerson). The experience
and sensitivity of the teacher is important in making interpretations of
what the learners do

. Questions might be put in many different ways and contexts, and put at
different times to ensure that a momentary lack of awareness is not
misinterpreted.

These are the beginnings of the implications for us of our developing theory of
understanding. It is important to realise that our theory develops by moving
between the theoretical search for implications, the discovery of practical
consequences for ourselves and others, and the application to incidents from our
teaching and learning.
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HOW FAR CAN YOU GO WITH BLOCK TOWERS?

Carolyn A. Maher and Ro iser
Rutgers University Brigham Young University

. =~

For this report, we focus on the development of combinatorial reasoning of a
Sourteen-year old child, Stephanie, who is investigating binomial coefficients
and combinations in relationship to the binomial expansion and the mapping
of the binomial expansion to Pascal's triangle. This research reports on
Stephanie's examination of patterns and symbolic representations of the
coefficients in the binomial expansion using ideas from earlier explorations
with towers in grades 3-5 to examine.recursive processes and to explain the
addition rule in Pascal's triangle. This early work enabled her to build
particular organization and classification schemes that she draws upon to
explain her more abstract ideas.

The teaching experiment reported here is a component of a longitudinal study! of
the development of mathematical ideas in children. Attention has been given to studying
how children build mathematical ideas, create models, invent notation, and justify, reor-
ganize, and extend their ideas. We have been observing Stephanie doing mathematics for
nine years. Stephanie's early work in combinatorics began in grade 2, building models to
justify her solutions and validating or rejecting her own ideas and the ideas of others on
the basis of whether or not they made. sense to her. In the earlier studies Stephanie simul-
taneously referred to and monitored the strategies of other group members and integrated
the ideas of her partner into her own representations. This enabled her to keep track of her
data and to cycle through constructions, thereby producing more powerful representations
( Maher & Martino, 1991; Davis, Maher & Martino, 1992; Maher & Martino, 1992 a and b).

In grade three, Stephanie was introduced to investigations with block towers2,
which enabled her to build visual patterns - such as the local organization within specific
cases based on ideas like "together”, "separated”, "how much separated” - to show us her
ideas. She recorded her tower arrangements first by drawing pictures of towers and

' placing a single letter on each cube to represent its color, and then by inventing a
notation of letters to represent the color cubes. Stephanie's working theories about the
towers provided striking and effective ways of working with mathematical ideas, They
triggered for her the spontaneous use of heuristics (guess and check, looking for patterns,

1Earlier work for. this study was supported in part by grant number MDR9053597 from the National
Science Foundation. The opinions expressed are not necessarily of the sponsoring agency and no
endorsement should be inferred.

2A tower is an ordered sequence of Unifix cubes, snapped together. Each cube is called a block. Each
block, and hence each tower, has a bottom and top. The height of a tower is the number of its blocks.
For a positive integer n, an n-high tower is a tower of height exactly n. We say two towers are the same
if their colors match, block by block, from top to bottom.

) 4-174

FRIC 182

Aruitoxt provided by Eic:



think of a simpler prcblem, etc.); the development of arguments to support a component
of a solution; and the extension of arguments to build more complete solutions.

Theoretical Framework

Guiding our work is the view that children come to their investigations with
theories that are subsequently modified and refined in contexts that include a mixture of
personal exploration and social interaction. Their theories include criteria for deciding
what to investigate, for determining how to go about their investigations, for choosing
what to look at, and for establishing more precisely what the discourse is about. We find’
that children's working theories empower very striking and effective ways of working
with mathematical ideas, often using concrete objects, in very particular ways, first as
evidence for specific arguments, then-as anchors for quite abstract constructions. In turn,
children's theories and their ways of working with these theories help us to constitute our
own conceptions of children's work and thought, and affect the way we build the
discourse that is shared with them..

We view the interview structure as our way of working with the children. In our
interactions with them, we, too, are building a theory. The process is reflected in the
research-interview structure. Initially, the interviewer engages the child in an exploration
atternpting to estimate the theory that guides the child's thinking. Later in the same
interview or in subsequent follow-up interviews, the ideas are pursued by the child who
initiates and takes on the responsibility for the direction of the discourse. In the intervigw
cycle, there is a "folding back"3 that begins with very concrete discussions centered on
local justifications. This is followed by a "teaching phase” intended to investigate deeper
connections. In these interview settings, children often make big connections early and
surprise us. These become our opportunities to learn from them.

Situations, in which children make connections on their own initiative, stand out
from carefully structured interview sequences in which connections have been carefully
delayed. One outcome of such a situation is that new hypotheses emerge that we
tentatively hold and that now redefine our working text about how children make
abstract connections. Once thé child's connection breaks the flow, the interviewer invites
further explanation. The child is asked about the structural similarity that is visualized or
being constructed. ’

In Mindstorms, Papert reflects on the building of his personal mathematical
understanding, which strongly influenced his later work, from his early experience as a
child playing with gears. As with Papert, some of Stephanie’s early mathematical
understandings can be traced to her activities using block towers to investigate counting
problems. Speiser's paper (1996) takes block towers as a concrete microworld for
exploring several quite abstract arguments, with combinations as a guiding theme. It was
triggered by the “Gang of Four" study (Maher and Martino, 1996a and 1996b), which

3See Pirie and Kicren (1992).
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shows the reasoning and development of ideas which led Stephanie and three other
children, at age 9, to discover the idea of mathematical proof, in order to conduct specific
arguments about block towers. The central recognition of both papers, directly
constituted by the "working theory" of these children, is that block towers, viewed as
concrete mathematical objects, can function as essential tools for building much more
general ideas. In particular, Stephanie's actions on these blocks have helped to anchor
our theoretical descriptions of her new, more abstract work, as much as they have helped
to anchor Stephanie's own discourse, with us, about that work. Hence our own views of
what to look at, how to go about it, what is out there, and what descriptions should
consist of —our theory, in other words— seems to start with towers, seen both mathe-
matically and metaphorically. Building from towers (and from Papert's gears) we develop
precise, particular descriptions, first of how Stephanie actually does powerful mathematics
based on towers, and second, of what, concretely and precisely, constitutes that power.

Setting

The research was initiated with a class of 18 first-grade children in 1989 with
university researchers and classroom teachers to study together how mathematical ideas
develop in children (Martino, 1992; Maher and Martino, 1996b). Stephanie was one of six
children selected for the study as a more or less representative sample of first-graders, at a
public school, in a blue-collar district. Stephanie and her classmates were challenged in
their mathematics classrooms to build solutions to problems and construct models of their
solutions. This setting, which for Stephanie continued to grade 7, encouraged differences
in thinking that were discussed and negotiated. In fall 1995, Stephanie moved to another
community and transferred to a parochial girl's school. Her mathematics program for grade
eight was a conventional algebra course. Stephanie continued to participate in the
longitudinal study through a series of individual task-based interviews. A subset of these
interviews provides the data for this study.

Guiding Questions
The following questions guide our analysis in order to consider, systematically the
ways in which Stephanie's past experience is drawn upon: How does Stephanie work
with towers in building images and understandings for higher mathematical ideas? What

is the role of past experience in building new ideas? How are her ideas modified,
extended, and refined over time?

Procedures, Data Source, and Task Design

Data come from two of eight individual task-based interviews of Stephanie that
were videotaped with two cameras to capture what was said, written and built, as well as
less tangible data such as tone of voice, speech tempo, and where people are looking
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while they talk and do things. Transcripts and analyses of the interviews were made by a
team of researchers including the authors and graduate students. Stephanie's written work
from outside the interview and observers' notes are also data sources. The teaching
experiment was conducted over a six month interval (11/8/95 to 5/1/96). Each interview,
approximately one and one-half hours in length takes on a particular format. It typically
begins with inquiries about the mathematics that Stephanie is currently studying in
eighth-grade algebra, leaving open the opportunity to talk about that mathematics and
further to pursue her thinking about fundamental ideas in greater detail.

Results

During the March 13, 1996 interview, Stephanie, unprompted, makes a connection
to towers in examining her symbolic representation of the expansion of (a+b)2-and (a+b)3.

S:  Sothere's a cubed [a3.]

I;: That's one. .

S:  And there's three a squared b [3a2b] and there's three a b squared [3ab2] and there's
b cubed. [b3] [Interviewer writes 1 3 3 1lunderthel 2 1 as Stephanie speaks]
Isn't that the same thing?

I;: What do you mean?

S:  As the towers.

I;. Why? . i

S: TItjustis. (March 13, 1996; lines 718-724) °

Stephanie has asserted (in her own way) that each 3-high tower gives a non
commutative monomial of degree 3 in 2 variables, and has indicated that these non
commutative monomials, indexed by the towers, collect to give the coefficients for the
commutative ones. OQur interpretation, therefore, is that Stephanie visualizes the towers
(referring to mental models—she does not have plastic cubes) in order to organize her
monomials. More precisely, we think that Stephanie is visualizing towers and reasoning
from her visualizations.

Stephanie, working at home before the interview, had written down the first six
powers of the binomial a + b. Interviewer 1 covered Stephanie’s paper, guessed the
coefficients for the sixth power expansion, and then wrote down the terms in full. Her
coefficients agreed with Stephanie's, but one polynomial term’ was different, nonetheless.
A few minutes later into the conversation, Stephanie gives further evidence, in a little more
detail, that she is visualizing towers and reasoning from her visualizations.

I;: So you have two factors of a. Right?

S Umhm

I, You have one of those. One thing with two factors of a. One thing with two a's
in it.

S: Umhm.

Il': I don't want to think of a's. I want to think of red.

O
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S:  Okay. [laughing]
I;: Can you switch that a minute?

S:  Yeah.
I;: So now I have one'thing with two reds. What thing can I be thinking of with two
reds?

S: That's a tower that's two high.
I;: Okay. And here I'm talking about two thmgs

S: Umhm.
I;: Oneis
S: Red and
I;: oneis

S: oneis yellow.
I;: Is that possible in two high?

S: Yeah.
I;: Having one red and one yellow? There are two of them?
S:  Yeah.

I;: Which two?
S:  'Cause the one is the red could be on the top or the bottom, with the yellow the

same thing.
I;: What about b squared?
S: Um. Two yellow. (March 13, 1996; lines 745-768)

In a March 27, 1996 interview, Stephanie, is invited by Interviewer 1 explain to
Interviewer 2 (who was unfamiliar with her recent work), what had happened in the
previous (March 13, 1966) interview. Stephanie begins with towers, and then introduces
the binomial coefficient notation (this time, following the earlier February interviews) as
C(n,r), in a carefully sequenced progression of examples, based on organizing towers. Here
Stephanie then explains that “r is a variable” which can range from 0 to n. This
observation, which shifts the level of abstraction upward from concrete towers to patterns
of formal symbols, also views the index n, the height of a tower, as a variable. This
implication seems to trigger an extraordinary, detailed recapitulation, by Stephanie, of the
recursive construction of the towers of height n from the towers of height n-1 (introduced
by classmates, Milin and Michelle in grade four4.

From this-unprompted discussion of the recursion on n for building towers, which
organizes towers in a very different way, Stephanie returns to the current exploration of
combinations (folding-back, which she is clearly leading) and, for increasing n, writes down

several further rows of Pascal’s triangle. At this point, with the triangle, including its

addition rule clearly in view, Stephanie goes on to explain, to Interviewer 2, that she can
use Pascal's triangle to predict the terms of (a+b)M for new, and hence larger, exponents.

On March 13, indeed, Stephanie had also used Pascal’s triangle, in particular its
addition rule, to make predictions, but she had done so in a conceptually quite different

4See (Maher and Martino, 1996b).
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domain: to predict, in effect, the numbers of n-high towers in each given case (k reds, say,
for k=0, ..., n) for new values of the height. Stephanie’s choice to center, in her folding

- back, directly on binomials strongly confirms that Stephanie now grasps the isomorphism

E

between Pascals triangle, which she had built, at first to summarize her towers cases, and
the array of coefficients for her polynomial expansions for the powers (a+b), for '
increasing values of n.

On the one hand, the text cited on March 13 is mainly that of Interviewer 1 with
Stephanie an eager, active listener. On the other hand, the discussion here fourteen days
later with Interviewer 2, innocent of what had gone before [and with a somewhat different
agenda), is just as clearly being led by Stephanie. The levels of abstraction noted, then
simply as a guess, in our description of the March 13th interview now seem, at least in part,
confirmed by Stephanie’s new variation. Again, the towers serve as anchor for a more
abstract discussion, but now for polynomials, whose coefficients now encode Pascal’s
addition rule.

The investigators’ choices, made to plan the teaching phase for the March 27th
interview, grew from a careful, and quite fundamental, folding back, now by the _
investigators, who had been reconsidering their conceptual description of the underlying
mathematics. This reconsideration built upon a very careful, systematic look, in great detail,
at how Stephanie might be imagining combinations, viewed, as Interviewer 1 suggested to
her on March 13, more as selections than as towers. Interviewer 2, deliberately kept
unaware of the content of the March 13 interview, began this new direction, building on
the exposition which Stephanie had just provided, by proposing a new exploration of
block towers. The goal of this exploration, which will cover quite familiar ground for
Stephanie, but in new ways, is to offer Stephanie precisely the tools to construct a formula,
originally due to Fermat (Weil, 1984), which expresses the relationship between two
successive binomial coefficients, and hence leads quickly to the standard formula for
C(n,k). In this discussion, a central feature is to fix n, the height of a tower, and to vary k,
beginning with a known case, either k=0, or, as Interviewer 2 did, with k=1.

The point of the new task, in the context of Interviewer 1’s ongoing work with
Stephanie, is that the fundamental observations needed to determine any C(n,k)—an
important question raised, but not resolved, on March 13—do not, in any way, depend on
the order of positions in a tower, -and hence seem much more concrete and direct than the
usual approach through permutations. This discovery, at the purely mathematical level [for
the full story, see Speiser, Block Towers and Binomials], through its fresh look at the
fundamental concepts which underly the work with Pascal’s triangle, changed drastically
the investigators’ line of questioning.
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The Interviewer's new look at the mathematics depends fundamentally on equal-
handed treatment of the two colors used to build the towers. Hence, independently, not
knowing how deeply the March 13th interview had explored symmetry, Interviewer 2
wonders about a difference between the way Stephanie has built her towers and the way
she subsequently organizes them.

I: About when you um I think it-was when you built these six towers. Uh. It looked to
me like you were making pairs of opposites....at the beginning, when you were
constructing them....but that when you were explaining to me how many there were,
you organized them differently....um, could you say a little more about that?

S:  Oh. Well. Because it's easier for me to look at them as opposites when I'm building
them. ’

I Umhm. :

S:  Then, ‘cause I know, ‘cause it's like pairing them up, like if there's one separated on
top, there's one, you know. :

" It Yeah.

S: But, it's easier for you to look at them when they're done if they're like this. So you
can see the pattern that they make. That you can't build down any more.

I: Umhm. .

S:  Or you can't build up any more 'cause there's no more to....do it.

Iy: So it was more for your explanation that....you rearranged them.

S: Like you could see it better like this, than if I said....I mean....'cause when we first did
the towers problems, we went through....I mean there were tons of Unifix cubes and
all it was, was those two are opposites. 'Well, how do you know? [imitating earlier
questioning]

I Umhm.

S: And I don't know. I didn't know how to explain it. So it's easier for you to see that....
there's the, you know, because it goes down 'til it can't go anywhere. That's why.

(March 27, 1996; lines 168-187)
In this discussion, Stephanie distinguishes clearly between her construction

technique, in which opposite towers seem to help her connect, and perhaps also cross-
check, different cases, and the text she’s building, which will verify a major claim.

Conclusions

Images, patterns and relationships have become mathematical objects which

" Stephanie sees and works with mentally in building abstractions. Our conversations with

E

her elicited both spoken and written texts that, along with our interpretations, have helped
narrate the development of certain mathematical ideas. These texts (works in progress)
extend over time and serve as records of particular events upon which later texts can
comment. Further, they serve as raw material from which new texts can be composed.
Analysis of clear cut mathematical representations, such as Pascal's triangle and its addition
rule, provides one major strand which interweaves with much more tentative reflective

o L 4-180

RIC 188

Aruitoxt provided by Eic:



discourse. Most importantly, the discourse, as we have seen, folds back on itself through
critical review and purposeful reshaping of specific items of past work, or through more
thorough reconsiderations over time of how past text relates to current and future needs.
We revise our texts and so does Stephanie as our experiments proceed through detailed
interactions with each other. Hence, as Stephanie's developing judgment enters the
discussion, she helps to focus and direct the investigations. Our agenda for the interviews
continues to be rewritten in response, often, to the direction that Stephanie pursues.
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CHANCE ESTIMATES BY YOUNG CHILDREN: STRATEGIES USED
IN AN ORDERING CHANCE TASK

Alina Galvéo Spinillo
Universidade Federal de Pernambuco - Brazil

This study focused on children’s representation and reasoning strategies when estimating
chance. Children aged 7 and 8 years were asked to order three sets of coloured marbles
with different degrees of chance of drawing a marble of a given colour. The role played by
the favourable, unfavourable and possible cases was equally emphasised in the instructions
30 that children were aware of their importance to estimate chance. The results indicated
that children correctly estimated and ordered the sets on the basis of part-part comparisons
between the favourable and unfavourable cases. The strategies adopted to solve the task
showed how young children deal with the relevant variables and crucial relations involved
in the chance concept.. The importance of estimate in children’s reasoning and the
educational implications for the teaching of math are discussed.

The concept of chance involves three crucial quantities (two parts — favourable and
unfavourable cases, and a whole — all cases) and relations between these quantities. These
relations can be represented either in part-whole (comparisons between a part to a whole) or
in part-part relationships (comparisons between the parts)'. Thus, in order to express the
probability of any event (e.g., blue marbles) in a set of three blue and nine pink marbles, one
may correctly represent this either in terms of a part-whole relation (3/12) or in terms of a
part-part relation (3 : 9).

Studies on the concept of proportion (e.g., Spinillo. & Bryant, 1991, Singer &
Resnick, 1992) revealed that children tend to apply part-part relations when the task to be
solved is opened to the two types of representation (part-part and part-whole). It is possible
“that these representations could be applied to other relational concepts such as chance.
Which type of representation children use and which quantities they consider in a chance
problem whose solution involves either part-part or part-whole relationships?

Piaget & Inhelder (1975), for instance, argue that children tend to focus on the
favourable cases in absolute terms, ignoring the role played by the possible cases (total
number of cases). Analysing the probability tasks the authors used, one may say that the

crucial question addressed to the children (“Which of the two containers shows the best

! These representations are associated to quantities that are complementary parts of the same whole.
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chance of drawing a blue marble: here, there or the chance is the same?’) made reference
only to the favourable cases;, so children credited great importance to the favourable cases
and neglected the part played by the total number of marbles in each set. Thus, this task calls
their attention to the favourable cases.

Acredolo, O’Connors, Banks & Horobin (1989) tested the idea that children can
attend to both favourable and possible cases. They devised a task in which the favourable as
well as the possible cases were salient across trials. It was found that even young children
take both cases into account when making probability estimations. Thus; this task calls their
attention to the favourable and possible cases. '

Although these investigations suggest a contradictory picture of children’s
knowledge about the concept of chance, an alternative interpretation might be given:
children perform according to task demands (see Konold, Pollatsek, Well, Lohmeier &
Lipson, 1993). The task devised by Piaget and collaborator‘s emphasised the favourable
cases; while the task adopted by Acredolo et al. emphasised either favourable and possible
cases. In both studies children performed in accordance with the emphasis given to the
variables in each task. One might ask whether children would consider the three variables
(favourable, unfavourable and possible cases) in a task in which they were equally
emphasised. In such a task, children could either establish part-part or part-whole
relationships. Even though this possibility cannot be discarded, one may argue that children
would tend to represent the relations in part-part terms by comparing the favourable vs.
unfavourable cases. Evidence for a part-part {epresentation is supported by the fact that it is
easier to deal with two parts of the same whole that can be directly compared (part-part)
than to deal with comparisons of a part of the whole it belongs to (part-whole). There is
already empirical evidence to support this idea (Spinillo & Bryant, 1991, Singer & Resmclg
1992; Spinillo, 1995).

Thus a study was devised so that: (a) the three variables (favourable, unfavourable
and possible cases) were equally emphasised; (b) the task was opened to the two types of
representation (part-part and part-whole); (c) children could estimate the chance ratﬁer than
making calculations for precise responses. The aims of this research were to examine how
children deal with, represent and relate the crucia! variables involved in the chance concept,

and also to explore the solution strategies adopted.

O
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Method

Subjects, materials and procedure

Forty elementary school children aged 7 and 8 years were individually presented w-ith. 12
trials each consisting of three sets of blue and pink marbles. They were asked to order the
sets according to the degree of chance of drawing a blue marble. The importance of
favourable cases (blue marbles), unfavourable ones (pink marbles) and possible cases (total
number of marbles) was explicitly stressed by the experimenter. The verbal justifications and

the strategies children used were analysed.

The sets of marbles and the trials
There were three types of trials with the following structure *:

Type 1: the sets had unequal number of favourable and possible cases (e.g., 4/8 vs.
16/16 vs. 9/12, 2/8 vs. 9/12 vs. 8/16). Even though they had different degrees of chance,
correct ordering could be made on the basis of thé absolute number of favourable cases.

Type 2: the three sets had unequal number of the possible cases and two of them had
an equal number of favourable cases and had different degrees of chance of getting a
successful draw (e.g., 6/8 vs. 4/16 vs. 6/12, 8/16 vs. 8/8 vs. 9/12). Correct ordering could
not be made on the basis of the absolute number of favourable cases.

Type 3: the three sets had unequal number of favourable and possible cases (e.g.,
3/12 vs. 6/6 vs. 8/16, 12/16 vs. 3/12 vs. 8/8). Differently of Type 1 trials, cor.rect ordering

could not be made on the basis of the absolute number of favourable cases.

Results
Correct ordering
An Analysis of Variance indicated significant main effects for Age (F (1,38)= 8.67, p=.005)
and Type of Trial (F (2,76)= 11.27, p<.001). There was an increasing number of correct
responses from younger to older children, and Type 3 trials were much more difficult than
the other two (Table 1). '

2 Each fraction represents a set in which the numerator corresponded to the number of favourable cases (blue
marbles) and the denominator corresponded to the number of possible cases (total number of marbles).
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Table 1: Means of correct responses (out of four) with standard deviations in parentheses.

TYPES OF TRIALS
AGES Type 1 Type 2 Type 3 Total
7 3.85 3.50 2.75 336

(.489) (827) (1410

8 4.00 3.90 3.70 3.86
(.000) (:308) (.733)

Total 3.92 3.70 3.22 3.61
(.350) (648)  (1.209)

The interaction Age x Type of Trials was’ significant (F(2,76)= 3.70, p<.05),
revealing that the effect of the types of trials on performance was age dependent. Type 3
trials were particularly difficult for the 7-year-olds but not for the older children who did
equally well with the three types of trials. This result was confirmed by Friedman Test (Two-
way ANOVA) (p<.05). In fact, at the age of 8 children experienced no difficulty with Type
3 trials. U-Mann-Whitney Test showed that 8-year-old children did significantly better in
trials Type 2 (p<.02) and Type 3 (p<.05) than did the 7-year-olds. In both age groups
children had the same good performance in Type 1 trials.

In sum, all children performed successfully in the task. The main difference between
ages occurred. in relation to the types of trials: for the 8-year-olds the three types of trials
were equally easy while the 7-year-olds experienced difficulties with the Type 3 trials. One
possible explanation for this result is that Type 3 trials required a relative approach by the
part of the children, and the three sets had to be taken into account simultaneously. The

strategies described below help to understand this issue better.

The strategies adopted®
It was found three major types of strategies based on children’s explanations, actions

and responses given to the experimenter’s questions during the task*:

3 The protocols were analysed by two independent judges whose reliability of coding assessment between
them was 83,95%.
* E - Experimenter’s interventions in parentheses.
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Strategy 1: Comparing only favourable cases in absolute terms

Item: 3/12 vs. 6/6 vs. 8/16 (Type 3) Ordering: 3/12- 6/6 - 8/16
This (3/12) has less chance because it has 3 blue ones only. This (6/6) is the one in-between
because it has 6 blue ones, and 6 is more than 3 and it is less than 8 blue marbles. (E:
Look, in this (6/6) there aren't pink marbles to mess the game up, while in this one (8/16)
there are 2 pink marbles.) Because in this (8/16) there are more blue marbles than in this
set (6/6). And in this set (6/6) there are more blue marbles than in the other set (3/12).

Strategy 2: The child isolates one of the sets and compares the other two

2A - the child isolates the set with a different number of favourable cases from that in
the other two sets, and compares the remaining sets on the basis of absolute number of
unfavourable cases.

Trial: 8/16 vs. 8/8 vs. 9/12 (Type 2) Ordering: 8/16 - 8/8 - 9/12
1 take this (9/12) apart. (E: Why?). Because it is the different one. (E: How is it different?).
It has 9 blue ones and the others have 8. And this is also the one with more chance than the
others. Now, this (8/8) and this (8/16)... Let me see... The chance could be the same in both
but... because of 8 and 8 (points to the blue marbles). But... this (8/16) comes first and this
(8/8) follows. (E: Why if they have the same number of blue marbles?). Because the chance
in here (8/8) is higher than in this (8/16) because it has 8 pink ones, and the pink marbles
do not help in the game. They are bad marbles. While in the other (8/8) there are only blue
marbles, (E: But here (9/12) there are 3 pink marbles, those that are not good). But there
are more blue marbles than in the others, so the charce is high.

2B - the child isolates the set with 100% of chance, and compares the remaining sets
on the basis of absolute number of favourable cases. '

Trial: 8/16 vs. 8/8/ vs. 9/12 (Type 2) Ordering: 8/16 -
9/12 - 8/8 '

This (8/8) stays far from the other two. (E: Why?) Because it makes one wins, it has all
marbles in blue. So, this (9/12) has medium chance, and this (8/16) has the lowest chance
of all because it has few blue marbles and many pink marbles. (E: And how about this
(9/12)?) Ah! This has 9 blues (9/12) and this 8 blues (8/16). Thus, low (8/16). medium
(9/12) and high (8/8). (E: But how it could be? Both (8/8 and 8/16) have the same mumber
of biue marbles.)The chance is higher here (8/8) because all the marbles are blue.

2C - the child isolates the set with 100% of chance, and compares the remaining sets
on the basis of favourable and unfavourable cases.

Trial: 3/12 vs. 6/6 vs. 8/16 (Type 3) Ordering: 3/12 - 8/16 - 6/6
This (6/6) is the highest (moves it to the right side). (E: Why?) Because [ am sure that

anybody can take a blue marble with this set, all the marbles are blue. Now I take this
(8/16) and this (3/12). This (8/16) stays in the middle, and this (3/12) is the one with less
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chance of all because it has more pink marbles than blue marbles. The pink ones mess the
game up. (E: But why did you think that this one (8/16) is in the middle?) The blue and the
pink are equal, 8 and 8 (E: But this one (8/16) has more blue marbles than this one (6/6),
isn't it?) 1 know, but even with less blue than the other this one (6/6) has more chance
because all of the marbles are. blue, there is no pink at all. When it happens no matter
whether the blue marbles are many or few. One will always win.

Strategy 3: the child compares the three sets in relative terms, considering the
Sfavourable and unfavourable cases in each set.

Trial: 8/16 vs. 6/8 vs. 3/12 (Type 3) Ordering: 3/12 - 8/16 - 6/8
The highest is this (6/8), because 6 blue marbles against only 2 pink ones. The pink ones
are not good, they did not help. Then the next is this one (8/16) and in the last place this
(3/12). This (6/8) is the highest because it has more of the lucky ones (blue) than of the
unlucky ones (pink). Here (3/12) is different because there are few blues and many of the
bad ones. This (8/16) is in the middle because the chance is the same inside: 8 blues and 8
pinks, the Iucky ones and the unlucky ones are the same inside. So we never know for sure.
(E: You know for sure that in 6/8 you get a blue one?) No. But at least I know that in this
game here (points to the all three sets on the table) the chance is bigger with this one (6/8).
(E: But why this (8/16) is not the highest? It has more blue marbles than the others.) But it
does not help much to have the same inside (poinis to the blue and pink marbles in 8/16).
(E: What does help then?) When there are more of the lucky ones than of the unlucky ones.
And to have all of them lucky ones. That's the best.
It is worth noting that the children never made reference to the possible cases,
. representing the task in part-part terms (favourable vs. unfavourable cases) as observed in
Strategy 2C and 3. The main difference between these strategies was that in Strategy 3 the
three sets were taken into account simultaneously. The use of these strategies varied
according to the types of trials and accordmg to age (Table 2).

Strategy 1 was never used in Type 2 trials, and Strategy 2A was only to be found in
trials Type 2. This pattern of result was much the same in both age groups. The fact that
Strategy | was never adopted in ordering sets in Type 2 trials is due to two of the three sets
having the same absolute number of favourable cases. This called children’s attention to
absolute number of unfavourable cases since the favourable ones were constant across the
two sets (Strategy 2A). This explanation suggests that Strategy 2A appears as an alternative
solution for Strategy 1 (absolute number of favourable cases) when the latter does not work.

The main difference was that 7-year-olds adopt Strategies 2B more often than the
older children did, while Strategy 3 was predominant at age 8 (70%). Strategy 2C and 3 are

invariably accompanied by a correct ordering of the sets.
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Table 2: Percentage of strategies by Age and Type of Trials

STRATEGY Type 1* 'l?y{)'e.sz* Type 3* Total
1 9 0 13 7
2A 0 25 : 0 8
2B 35 14 36 28
2C 22 22 21 22
3 34 39 30 ‘ 35
8 yrs
1 : 3 0 3 2
2A 0 4 0 1
2B 10 7 11 10
2C 16 15 20 17
3 71 74 66 70

* Percentages extracted from the total of 80 responses in each type of trial per age

Discussion and Conclusions

The following discussion concentrates on the cognitive nature of the strategiés and
on what they tell us about the way children initially reason about the concept of chance. This
is not. only of psychological interest, but also of didactical importance. The study showed
that 7-8 -year-old children can correctly estimate and order different sets according to the
chance of drawing a given element. They did so by representing the relations as ratio
(favourable vs. unfavourable cases in each set) rather than in terms of part-whole relations
(fractions). This shows that young children have a systematic and appropriate approach to
deal with the concept of chance even before they are taught probability in school. The fact
that children adopt part-part instead of part-whole relations (according to Singer & Resnick,
1992, children are part-part reasoners) suggests that the concept of chance (and other

" relational concepts as well) could be initially grasped in terms of ratio before it acquired the

O

form of fraction. Estimating is an important intellectual activity in which children have the
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opportunity to deal with the principles behind the concept without worrying about
calculations that they may not master yet (e.g., Streefland, 1982, 1984, 1985). Instruction
should produce a shift toward more effective and powerful forms of reasoning by calling
children’s attention to (a) the whole and to the parts (see Nunes & Bryant, 1996; Spinillo,
1996), and (b) the fact that the chance could be altered when increasing/decreasing the
variables (see Lamon, 1995). This study might be an argument for starting to teach complex
concepts while children are still in elementary school. Instruction on such concepts may have

a crucial role on children’s development of mathematical reasoning.
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MULTIPLE REFERENTS AND SHIFTING MEANINGS OF
UNKNOWNS IN STUDENTS' USE OF ALGEBRA

Kaye Stacey and Mollie MacGregor
University of Melbourne

In this paper we show that an interpretation of a variable as having
multiple referents or shifting values is evident in the thinking of a sample
of Australian students. We show how their imprecise and varying meanings
for "the unknown" affected their reasoning as they worked through
solutions to problems. In interviews with students we identified three
modes of use of variables: to refer to different quantities in the one
equation; to refer to different quantities at different stages of a solution;
and as a general label for any unknown quantity or a combination of
unknowns.

In the early years of algebra learning, students are taught to use letters to represent
specific unknowns or sets of possible values of variables. Some students learn easily
and succeed on school algebra tasks whereas others are completely mystified. Like
many other researchers, we have explored the variety of ways in which students
interpret and use algebraic letters. We have presented evidence (MacGregor &
Stacey, 1996, in press) for the following interpretations and beliefs (the first two
already well-known) in the context of simple translation tasks :

» the letter is perceived as an abbreviated word.

* the letter is assigned a numerical value, that would be reasonable in the
context.

« the letter is assigned a numerical value related to its position in the alphabet.

» the letter has the value-1 unless otherwise specified.

* the same letter can represent different quantities.
These interpretations were seen in responses to items that required students to write
simple expressions. For example, students were asked what they could write for
David's height, given that David is 10 cm taller than Con and Con's height is # cm.
Common responses, reflecting the interpretations listed above, were:

* Dh (meaning "David's height")

* 110 cm (10 cm taller than 100 cm)

e r cm (h is the 8th letter of the alphabet, 8 + 10 = 18, and the 18th letter of
the alphabet is r)

* 11 (h =1, therefore 10+ h =10+ 1)

* h=h + 10 (h can represent two different quantities)
It is possible that the lack of any context or purpose associated with the test items
used in studies by ourselves and others affected students' decisions about how to
interpret letters For example, in certain contexts DH might mean "David's height"
just as CD means "compact disc”; and in codes or puzzles, h might stand for the
numeral 8. These interpretations are not unreasonable, and can be associated with
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the use of certain teaching materials as well as with students' everyday experlences
(MacGregor & Stacey, in press).

As part of our subsequent research program, we wanted to find out whether
students would be more likely to use letters as unknowns in the conventional way if
they were given tasks in which the use of algebraic notation has a clear purpose.
Students learn that one important purpose is to solve problems, and they are shown
how to use algebra to solve certain types of word problems. We expected that in a
familiar problem-solving context most students attempting to use an algebraic
method would use letters to represent unknowns. The data show that this was
generally the case. However some students used x to mean "anything unknown" and
accepted that there could be multiple referents or a series of referents for x as they
worked through a problem. Some indications of this interpretation - a letter
representing different quantities - had been found in our previous work (see
above). Fujii (1993) found that it occurred in a sample of Japanese students, and
suggested that it represents students’ emerging understanding of the non-specific
nature of variables, that is, "x can be any number". In Fujii's study, students
accepted that if x + x + x = 12, then the first x could be 2 and the other x's could be
5. This belief in multiple referents for x has been rarely mentioned in the
literature, although a related misconception- that two different letters cannot have
the same value - is widely recognised. In this paper we show that an interpretation
of x as having multiple referents or shifting values is evident in the thinking of a
sample of Australian students. We show how- their imprecise and varying meanings
for "the unknown" affected their reasoning as they worked on problems.

Procedure

We prepared a set of word problems to be used by teachers for their own classes.
. The students involved were aged 13-15. The majority were in their third or fourth
year of algebra learning. We collected written problem solutions from
approximately 900 students in 10 schools, and we carried out interviews with 30
individual students in three schools. Discussion with these individuals while they
worked on problems gave us insights into their reasoning and explained much of
the behaviour evident in the written solutions collected from the large sample.
Three of the problems, which we refer to in this paper, are shown in Figure 1.
They belong to a category of problems frequently used for beginners in algebra. In -
devising the problems, we have chosen the simplest set of possible relationships (see
Bednarz & Janvier, 1966, for variants and their complexity). Janvier (1996, p.
235) has pointed out that there are at least three valid interpretations of letters in
school algebra - place-holder, unknown, and variable - producing different patterns
of reasoning. In the problems referred to in this paper, only one of these
interpretations - letter as specific unknown - is required.
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1. The perimeter of this triangle is 44 cm. Write an algebraic equation
and work out x.
' 2x an
X an

14 can

2. Some money is shared between Mark and Jan so that Mark gets $5
more than Jan gets. Jan gets $x. Use algebra to write Mark's amount.
................ If the money to be shared is $47, how much would Jan get?
How much would Mark get?

3. A bus took students on a 3-day tour. The distance travelled on Day 2
was 85 Km farther than on Day 1. The distance travelled on Day 3 was
125 Km farther than on Day 1. The total distance was 1410 Km.

Let x stand for the number of Km travelled on Day 1.

Use algebra to work out the distance travelled each day.

Figure 1. Problems, called TRIANGLE, MARK, and BUS in this paper

Success rates for the three problems

A large proportion of students wrote no equations. Others tried to write equations
but then switched to non-algebraic methods to solve the problems. Table 1 shows
the percentages who wrote a correct equation (whether it was subsequently used or
not), and the percentages who obtained a correct answer to the problem by any
method. Methods included trial-and-error, logical arithmetic reasoning, and the
solving of an algebraic equation. Many students who began using algebra changed
to another method to get the answer.

Table 1. Percentages for equation correct and for answer correct by any method

1. TRIANGLE = 2. MARK 3. BUS
Year n equation answer equation answer equation answer
9 249 - - 15% 76% 24% 70%
10 700 38% 63% 30% 73% 32% 60%

Note. The Year 9 sample used a version of the test that did not include the "Triangle" item.
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As Table 1 shows, approximately one-quarter of the students in the sample did not
work out correct answers to these very simple problems. Some of these students
had tried to use algebra, but without success. Students in two particular schools,
who had been taught a problem-solving routine for selecting and naming an
unknown, generating expressions, and formulating an equation, were almost all
able to write algebraic solutions that were concise and correct. At another school,
teachers wanted to find out whether specific instruction in formulating equations
would be beneficial. One class was given demonstration at the chalkboard and
practice on 12 problems before attempting our test. The results, for both writing
equations and solving the problems, were far better than the results for a parallel
class who had followed the normal curriculum. Success rates for BUS, for
example, were 78% and 27% respectively for the two classes. This outcome,
suggests that the majority of students should be able to learn to use algebraic
methods for solving problems. '

Excerpts from interviews with students

Below we present excerpts from interviews with six students (age 14-15) to show
how different uses of a letter to symbolise "the unknown" affected their attempts to
use an algebraic method. These modes of use were:

* x may refer to different quantities in one equation.

« x refers to different quantities at different stages of the solution.

* x is a general label for any unknown quantity or a combination of them.

1. Marianne, trying to make sense of TRIANGLE, sees x as a label for two
different unknown quantities. She writes the correct equation 2x + x + 14 = 44 but
says that she cannot solve it unless she knows the value of x to substitute in 2x. If
she knows this x, then she can work out."the other x". She sees her equation as
containing two unknowns, both called x (see line 4), and she knows that an equation
with two unknowns cannot be solved.

1 M: You can't solve that unless you know what x equals. If I knew what x

2 meant in there [indicating the side labelled 2x] then I could do it. There's
3 no way you can work it out from between those two [indicating 2x and

4 14]. What we are trying to do is to find out what.both these x's mean, and
5 we can't do it unless we know what that x [indicating 2x] means.

2. Justin sees the sole aim of the task as finding the length of the side labelled x.
He does not seem to believe that the instruction to find x also applies to the side
labelled 2x . To find x, he assumes that the side labelled 2x is 2 cm long. Thus the
value of x is 44 - (14 + 2), giving 28. (This answer was relatively common in the
main sample.) The interviewer begins by ‘asking Justin how he worked out x = 28.

J: [pointing to the sides labelled 14 and 2x] That's obviously 16.

I: Why? Did you see that x there? [indicates 2x]

J: Yes, I noticed it, but I thought no, it's obvious that you need to find out
what this x is. [indicates the single x]

I: Could you write the equation?
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7 J: Yes. [writes 2 X x + x + 14 = 44]

The interviewer asks Justin to solve his equation. He says he can't, and looks back
to the diagram, again expressing his concern about not knowing the value of x in 2x
(lines 8,9). He tries to resolve this dilemma by.saying that x must have the value 1
(an error referred to earlier in this paper), but later rejects this idea (line 13)
because he sees that the triangle could not have sides 1 cm, 2 cm and 14 c¢m because
1 +2+ 14 gives 17, not 44. ‘

8 I: That's what I don't understand, when you have got 2 times x and you don't
9 know what x is, you know the 14, so seeing that [points to side x cm] is

10 just x, it would be 1. And that's 2 times I [indicates side 2x] so it's still 2.
11 I: Why is x equal to 1?

12 J: Because if it doesn't have a number there [to the left of x] then x equals
13 Jjust 1 ... but that's not right.

3. Dean thinks of x as signifying the total of unknowns. For TRIANGLE, he
works out x to be 10 but writes down his solution as x = 30. He then says that is
wrong, and writes x = 10 X 3 as his final answer to the problem. He explains, "It is
three lots of 10". He seems to think that x should represent everything that was not
explicitly given in the data, although he knows that the side labelled x cm is 10 cm
long and the side labelled 2x cm is 20 c¢m long.

4. Joel has in mind multiple and shifting referents for x in the MARK problem. He
‘writes the correct expression x + 5 for Mark's amount. Then he writes x + 5 = 47
and the interviewer queries him.

I: What does it say?

I. You've got one starting number and you add 5 and get 47.

L: This [indicating 47] is the total amount, this [indicating 5] is the extra five,
so what is this x? [indicating x in the equation x + 5 = 47]

J: The amount they both get. The amount that Jan gets. I just like to keep the
three of them, 47 dollars, x, and 5 dollars more, and make something out
of them. .

Although Joel has written the correct expression for Mark's money in terms of x,
he then sees the unknown x as "the amount they both get" (line 5). He also sees it as
Jan's amount (line 5). When asked to explain his equation, he does not relate it back
to the problem situation but interprets what he has written as a narrative about
numbers - a sequence of events (line 2). He says that he needs only one x in his
equation (lines 6,7). His equation states a relationship between the numbers 5 and
47 given in the problem and some unknown amount. However it is written for the
interviewer, and not seen by Joel as useful for obtaining a solution to the problem.
When he solves it and obtains x = 42, he says that Jan's amount is $42. He has lost
connection with the meaning of the problem which he initially understood. His
earlier spontaneous approach to solving the problem (interrupted by the
interviewer asking for an equation) was to divide 47 by 2. His thinking seems to
move back and forth between x as the amount to be shared equally ($42) and x as
the value of each of the final shares ($21 and $26).
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5. Les also uses x to refer to different quantities in MARK. He uses mathematical
notation informally to try to keep track of his thinking. His first equation for Item
2 has an x that is the first thing he wants to work out (“what is left", lines 1 and 7
below), but then he talks about "sharing two x's" (line 3). Les knows how to work
out the answer by keeping in touch with the situation, but does not know how to
write down his procedure. He finally writes a description of the steps in his
. calculation, trying to make it look like algebra (line 11). To begin, Les writes the

equation 5 + x = 47 and explains what it means.

L: x is what is left out of $47 if you take 5 off it.

I: What might the x be? ‘

L: Say she gets $22 and he gets $27. They are sharing two x's.

I. What are the two x's?

L: Unknowns ... they are two different numbers, 22 and 27.

I: So what is this x? [pointing to his equation 5 + x = 47]

L: I thought that was left over from $47, so it's $42.

The interviewer points out that he has three meanings for x, which makes the
equation hard to solve. Les decides to use x and y for Jan's amount and Mark’s
amount. He writes x + 5 + y =47, and explains what he is going to do.

8 L: He's got 5 more than her, so you take 5 off. Would you minus 47 from

9 S plus x plus y?

It appears that he wants to subtract 47 from both sides of his new equation,
remembering a method he has been taught. The interviewer wants to see how he
will do this (line 10), but he reverts to arithmetic thinking (lines 11, 12).

10 I OK, try that.

11 L: [writes 47 - 5 + x + y] Then minus 5 is out of the way, so you split it in
12 half. If you take the 5 off, then you've just got two unknowns, 21 and 26.

NN B W —

The logic of Les's reasoning is sound, but he does not know how to express it
clearly in words or how to write down his solution procedure. Like Joel, he has
thought of x as standing for 42, 21 and 26, that is, for any quantity that was
unknown and needed to be worked out.

6. Tim writes x + 5 for Mark's amount, but extends it to make x + 5 = x, saying
that the x after the equals sign is "Jan's x". The interviewer queries him about the
meaning of the other x. ~

1 I: So what is this x? [points to the first x in x + 5 = x]

2 T: That's Mark's x.

3 I: And why do we add 5 to it?

4 T: Because Mark has 5 more dollars than Jan. No, that's not right, it should

5 be Jan's x plus 5 equals Mark's x.

6 I: Could you write an equation to say that Mark and Jan have $47 in total?
The interviewer explains that to write an equation you don't have to work out a
numerical answer first. Tim now thinks he should write what he would do to work
out the answer (line 7).

7 T: x divided by half equals x [writes x + % =x]
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Here Tim is writing x to mean "someltotal amount of money" and then x again to
mean "half the money". For him, x + 7 = x makes sense because he knows, at least
momentarily, what each x refers to. He wants to share the $47 equally first.

8 I: So you take the money-and you halve it. It that what you mean?

9 T: Yes.

During the interview, he has used x to mean "Jan's amount" (line 5), "the total"
(line 7), and "half the total" (line 7). Although he recognises that if Jan has $x then
Mark has $(x + 5), he is not sure whether the x in (x-+ 5) is "Jan's x" or "Mark's
x". Since (x + 5) represents Mark's money, he first thinks, not unreasonably, that
the x in it should be "Mark's x" (line 2). He later uses x to mean any unknown
quantity he is thinking of.

Discussion

The interviews reported here explain some of the solutions written by students in
the larger sample. They indicate three different modes of use of a letter to
symbolise "the unknown" (or, as we have seen, "unknowns"). Some students
believed that x can stand for more than one unknown (including the total of all
unknowns) simultaneously; some changed its referent at different stages of the
solution; and some saw the unknown as any or every quantity they didn't know in
the problem.

Mode 1. Interviews with Marianne and Justin illustrate the first mode. These
students used x to refer to two different quantities in one ‘equation. They both
explained why they could not solve Item 1: they saw the two x's - in the diagram,
and in the equation which they both wrote correctly - as having different values.
Justin seemed to think that the item asked for only the side precisely labelled as x to
be found.

Mode 2. Dean's interview shows how he thought of x as representing a total of
unknown quantities. This thinking may be the reason why some students in the
large sample wrote x + 85 + 125 = 1410 as their equation for the BUS problem.

Mode 3. Joel, Les and Tim changed the referent of x at different stages of their
thinking. Joel and Les each used at least three referents within a minute or so. As
the solution process continued, they used the one letter to stand for the many
different unknown quantities which are present in even the simple situations
portrayed in the problems. In the light of this, the standard instruction given by
teachers to let a letter stand for "the unknown" seems particularly inappropriate
and highlights the arbitrary nature of the way in which teachers automatically

classify problems as having a certain number of unknowns.
AY

Tim's use of variables exhibits all modes. His equations (x + 7=xand x + 5 =x)
are action statements about how to get from one unknown quantity to another.
"Equations” such as these, which he and many other students wrote, represented
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steps in their reasoning but were not useful except as an informal reminder of the
most recent idea they had in mind.

Many of the students interviewed were puzzled by our request to write equations,
apparently not appreciating how this could help them solve the problems. In fact
many students in the large sample wrote, as their equations, formulas for the
answers worked out by logical arithmetic reasoning. One student, for example,
wrote

47 -5 47-5
Jan x = — Martk x = —5 +5

The success of students at the three schools mentioned above indicates that explicit
teaching of the logical basis of algebraic problem solving is effective and should be
more widely used.

Mathematics educators and psychologists continue to wonder why students pass
through three or four years of algebra courses without being able to use algebra to
solve problems. It is widely accepted that these students have not learned to "think
algebraically". Many of the students in our sample exhibited logical and complex
thinking. However when asked to write an equation, or when their thinking was
pushed to its limit on harder problems, they did not know.how to use algebraic
notation as a tool to organise, record and extend their ideas. Their problem-solving
strategies are restricted to a series of independent calculations working from what
is known towards the answer. They record ideas and calculations using written
symbols informally and inconsistently, believing that they are doing algebra.
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Elementary Components of Problem Solving Behaviour
Martin Stein
Westfilische Wilhelms-Universitiit, Miinster

Abstract

The paper discusses problem solving abilities of children in primary schools. It focuses
on gestalt operations and on heuristic techniques used by children when solving
problems. We show that even in non-geometric contexts gestalt operations can be
found, and we illustrate that even in primary education combinatorial as well as
backtracking techniques are used by children in a natural way without prior instruction.
The tasks are non standard tasks in different contexts (e.g., puzzles, arithmetic, money).
To stimulate problem solving behavior, all tasks are unsolvable which means that the
goal of the problem can not be reached. The unsolvability is of a kind which can be
understood and proved by children of this age.

1 Question of research and basic considerations

In the history of mathematics as well as mathematics teaching problem solving always
has played an important role. The research which is described on the following pages
has connections to three fields of research: ‘

1. Gestalt Psychology (see, e.g., WERTHEIMER 1961)

2. Heuristics of problem solving (see, e.g., POLYA 1967)

3. Information processing psychology (see, e.g., NEWELL & SIMON 1972)

A more complete analysis of the literature will be found in my next publication.

Since 1992 I work - together with several groups of student teachers - on problem
solving. We focus on such components of problem solving ability which are not
subject of mathematics lessons. As a consequence, we do not deal with word problems
and other “classical problems”. The central idea of our research is to use sets of tasks
which are all unsolvable which means they have a goal which can not be reached. The
unsolvability, however, is of a kind which can be understood even by younger children
(e.g-: try to find exactly 4 different numbers out of the set {1, 2, 3,4, 5} which give the
sum 9). Subsequently, we shall use the term impossible task as well.

The main purpose of our research in its present state is - like a “constructive existence
proof” - the identification of elementary components of problem solving behaviour
which are actually used by younger children'. The search for those components is
organized as search for noticeable patterns in the subject’s behaviour. We call such
patterns seeds of strategy. This means that we do not assume a conscious use of the
strategy in question. It may “grow” and come to consciousness (e.g., if the interviewer

! A project in progress which is supported by a grant from Deutsche Forschungsgemeinschaft will
systematically eompare the behaviour of pupils of grades 3/4 and of grade 8.
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intervenes), or it may “die out”.

In this paper, I describe gestalt operations and problem solving techniques (see also for
more complete desciptions and more tasks: STEIN 1995 and STEIN 1996). A paper in
preparation will focus on reasoning abilities.

In section 2 we shall first describe some of the tasks used, and then make some remarks
on the construction principles and reasons for this type of task design. Sections 3 and
4 give some examples for the results which can be obtained by our method.

2 Tasks and Design of the Study

2.1 Arithmetical tasks

Given are round tokens (each only once), bearing the numbers 1, 2, 3, 4 and 5 (task 1)
resp. 1, 2, 3,4, 5, 6 (task 2). The problem solver gets a pattern which informes him/her
how many tokens he/she may use. In the first unsolvable task the pattern shows 4
circles. Consequently, the problem solver shall lay down 4 tokens (for each circle one
token), which sum up to 9 (This task will be called sum-9-task). In the second task, the
sum 14 shall be built using 5 different tokens out of {1, 2,3, 4, 5, 6} (“sum-14-task™).

sum-9-task ‘ sum-14-task
9 14
0000 00000

2.2 Mixture of geometrical and arithmetical aspects

The tasks described in the previous section can be embedded in a geometrical context:
As an example, for the sum-14-task, a strip with a length of 14 units shall be filled with
exactly 5 stripes. For this task, the solver has stripes of legth 1 unit, 2 units, 3 units, 4
units, 5 units, 6 units (each stripe may me used only once). -

Pattern: Stripes:

O o oo OTd

O I Y D O |

(IEEEEEEESEEEEE

Having finished one attempt to reach the goal, the solver can start the next attempt in
a new row. The same rules apply in this row. There is enough material given; as a
consequence, the problem solver has full information about his/her earlier attempts on
solving the problem.

2.3 Towers )
This is the well known task to build all possible different towers of a given height from
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yellow resp. red stones. To make it impossible to reach the goal, there are more spaces
to place the towers than different towers exist. Le., in the case of towers of height 3
built from two different colurs, there are nine spaces given (though there exist eight
different towers only).

2.4 Basic principles for the construction of the tasks

The tasks are constructed following some basic principles.

- They demand no prior knowledge which exceeds basic abilities of mental
arithmetic.

- They use implicit rules which can be understood immediately.

- Every task has a certain goal. This goal can not be reached. It can be easiliy
understood, however, that reaching the goal of the task is impossible.

- The material encourages enactive activities.

Using impossible tasks has several reasons:

1. Better understanding of and more information about problem solving behaviour
The impossibility of reaching the goal inspires pupils to try many different
approaches. They try in many different ways to find the solution or a partial
solution.

2. Stimulation of Systematic Bahaviour
Solvable problems - i.e. problems the goal of which can be reached - can be
solved by incidence. Our impossible problems, however, can be understood only
by a systematic analysis of the problem space (in the sense -of, e.g.,
NEWELL/SIMON 1972). The size of the problem space depends on the
solver’s ability: in case of the sum-9-task (see section 2.1) a problem solver may
use the laborous technique of systematically checking all possible combinations
of 4 different numbers out of the set {1, 2, 3, 4, 5}, or he/she can justadd up 1 +
2 + 3 + 4 and argue that this is the smallest sum which can be constructed using °
four different numbers out of {1, 2, 3, 4, 5}, and that this sum is > 9.

3. Getting Information about “natural reasoning behaviour”

Although this is not the central part of this paper, it should be mentioned that our
impossible tasks are excellent tools for measuring reasoning behaviour: since the
pupil is not able to reach the goal of the problem, he will start reasoning about
the “unsolvability” of the problem without enforcement by the eéxperimenter.

2.5 Design of the study
All problems are solved by groups of two pupils. The pupils are informed that some of
the tasks can be solved, other tasks not, and that they have to find out what is the case

and why.
As has been said, the search for components of problem solving behaviour is a search
for noticeable patterns in the actions of the children. We do not assume, however, that
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such a pattern is guided by a consciously applied “strategical insight”. If a teacher - or,
in our case, the interviewer - starts asking questions about the behaviour, the pupils
may discover the strategical implications of their behaviour and start talking about it
as if they had planned their proceedings from the very beginning.

As a consequence, the interviewers only watch the pupils work. When the pupils say
that the task can not be solved, or show some “suspicion” the interviewers ask whether
there might be other ways to solve the task... This may be repeated once. Only at the
end of the interview the interviewers are permitted to talk with the children about their
understanding of the situation and about the process of solution.

The interviews are filmed with a video camera. Every action of the children is
protocolled. The final transcription has the character of a script for a movie which
allows to replay the interview.

The script is interpreted turn by turn (MAIER 1991) by a team of interpreters which
includes the interviewer. The behavior of the children is analysed under a broad range
of aspects. In"'many cases there will be more than one interpretation of the same
behaviour. The same action may be interpreted, for instance, as a consequence of a
social conflict between the two children, or may be seen as influenced by gestalt
operations or be understood as guided by explicit use of heuristic strategies.

In the following sections we give only such examples which have a rather -
unambiguous interpretation.

3.  Gestalt-Operations

Many actions of problem solvers can be understood as reactions on the gestalt of the
situation, or they aim at constructing special shapes or patterns. The analyses of
transcripts under this aspect are influenced by WERTHEIMER 1961.

We give some examples of typical gestalt procedures.

3.1 Production of Standard Patterns

Arithmetical Tasks

The number 10 plays a special role in mental arithmetic. In that sense this number is a
“standard pattern”. As a consequence, we rather often find pupils who in the “sum-14-
task” fill up to 10 - though it could easiliy be recognised that no way leads from this
sum to the demanded’sum 14.

Tower tasks

Opposite pairs and staircases

The “opposite pair” is a standard pattern which can be found rather often, e.g.:

g] Obviously, this pattern is a reaction to
B the fact that the towers are built using
2]

2]

two colours.
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We observed pupils who solved the whole task using opposite pairs: (the following
example was built by pupils in grade 4).

Opposite pairs are of limited use only since there is only one tower which is “opposite”
to a freshly found tower. As a pattern, the stairs are far more useful. Discovering this
pattern, the problem solver can construct a whole series of new towers.

The following pupil (he works together with a second pupil, but the following action is
done by him alone) gives a good example (grade 4).

The pupil has generated the following towers.

W]
5 3 2

£

7 6 4

He starts to rebuild this series of towers. We show the last three steps of his work:
The pupil removes towers 5 and replaces it by the next “step”. He says: “One higher”.
We conclude that he has discovered the staircase-pattern in the towers 2 and 3.

We now have the following situation:

MFAAEEEME

1] w| [w r] [r] Wi

W] w| [w] w| (1] Wi

G 3 T I 3 8 R I 7 A 5 R

9 8 71 6 4 3 T

- The pupil now removes tower 6, says: “One higher” and finally builds the last “step”:
w] [r] [r] [r] [r] 1]

1] w| |w] wl |r] 1]

N EH M

m e FHEHEEE

He finally says: “Now I reached the top”.

It is interesting that the “stairs” are a pattern which is independent of context.
Hasemann (1985) describes a similar behaviour when pupils have to find all patterns
which can be used to fold cubes. :
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Symmetry

Using opposite pairs, some pupils find patterns of surprising symmetry. In the
following case, the final pattern shows a “nonverbal proof” of the fact that it is not
possible that there are exactly nine different towers of height three, using 2 colours:

[w] (w) (W]
vl [ [w] [w] i
[w] — [w] [w]

4 Problem solving techniques

POLYA 1967 describes problem solving techniques as working forward or working
backward. Good descriptions of elaborate techniques can be found in ANDERSON
1983 and LAIRD et. al. 1986.

4.1 Systematic combinatoric checking

The sum-9-task in its geometrical representation leads in the case of the following
interview (pupils in grade 4) to an impressing result. I show the first 1.5 minutes of the
interview.

The stripes which are layed down are marked by their length. The two pupils are
referred to by S1 and S2. The stripe of lentgh 5 is named “Ser”, the other stripes are
named respectively. ,

S1 lays down the Ser. In nearly the same moment S2 takes the 4er in his hand, takes it
away again and takes the 3er. S1 says:”We shall need always mostly the small ones”.
S1 lays down the 3er. We have the following situation:

EEGEEEEEN

S1 fills lip the pattern with the ler. So the pattern is fully filled, but the condition was
to use exactly four stripes. Immediately after laying down the ler the pupils start to
work on the second row which contains the same pattern. Firstly, the 4er is laid down.

s[s[s[s[s[313[3]1
44f4]4

S1 lays down the 2er and says: “The ler, the ler!”. S2 lays down the ler.

s[sTs]s[5[3[3]3]1
4[af4]4]2]2T1
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In the same row, the pupils try to use the 3er (which is too long) and the 2er (which
violares the rule that in one row each stripe may be used only once). None of these
attempts remains on the pattern.

S1 now lays down the 3er, S2 the 2er, S1 the 4er:

s[s]s[s[s]3[3]3]1
4[4]4
3[3]3]2[2]4]4]4]s

S1 says: “Oh, that does not fit” and laughs. S2 now uses the next row to lay down the
3er. S1 lays down the 2er, S2 the ler.

3131

HEHE
4[4]4
3[3[3
3[3]3

N[N &)
NNl v
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S1 first tries to fill up with the 4er (which is too long). S2 holds the 3er over the gap,
but S1 says that this would violate the rule that each stripe must only occur once in a
row.

They start to fill up the fifth row with the 3er. S2 takes the ler in his hand. He first
hesitates to use it, but is encouraged by S1: “Yes, use it, yes yes.” After a quick check
of the der (which is not laid down), the 2er is laid down.

51515151513 13}3]1
4(4(4(4]2]|2|1
31313121211
31313]12]|2]|4]4]|4|4
313]3]1]2)2

This last picture shows the relevant stations of a rather systematical checking. If we
additionaly bear in mind the stripes which were checked but not finally laid down, we
have a remarkably complete combinatoric analysis of the situation.

It is especially remarkeable, that from an adult point of view, the last picture is
sufficient to give good reasons for the impossibility of reaching the goal of using
exactly four different stripes to fill up one row. Our pupils, however, start with new
attempts and work for another five minutes without getting better insight of the
situation. This is exactly what we mean by using the term seed of strategy: There is a
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strong impression, that the behaviour of the pupils is guided by the combinatoric
strategy of systematic checking - but this guidance appears to be sub-conscious, and
dies out if there is no external stimulation by the interviewer.

4.2 Backtracking

Backtracking is a problem solving technique which is used in computer science. Its
special way of “going forward and then backward in one’s own tracks” leads to
efficient computer programs. The term depth-first search by NEWELL/SIMON
describes the same phenomenon. With some of our problems, it can be an efficient -
but highly non-trivial - technique of analysis. If we find a “backtracking pattern” in our
interviews, we shall usually realise that- since our interviewers do not intervene - it
dies out after some time: the seed is planted, but it does not grow to reach
consciousness.

The following example shows to pupils (grade 2) working on the sum-14-task. In this
presentation of the task, the pattern in which the tokens are to be layed is given only
once. So here each row of the transcript means a new action. The sequence is laid by
S2. Nearly from the beginning, S1 holds token 2 in his hand. Considering this, the
analysis is complete, if we accept that the pupils do not try actions which are obviously
“ridiculous” (trying token 1 when the sum is reached or exceeded).

- 5 - - - token 5 is laid down in the second space

6 5 - - - token 6 is putin space 1

6 54 - - the4islaid down (sum is 15, too high)

6 5 - - token4isremoved

6 53 - - token 3 laid down (sum correct, but too many free spaces)

65 - - token3isremoved

5 - - - analysis complete: token 6 is removed
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CHANGING TEACHING AND TEACHER CHANGE

Pacla Sztajn!
Departamento de Educagio,

Pontificia Universidade Cat6lica do Rio de Janeiro, Brasil

Although reform efforts have some times managed to change teaching, the changes implemented are
many times superficial and represent just the paste-on of a few new adjustments over the old practice.
This paper argues that for true changes to occur in mathematics education it is necessary to go
beyond changing teaching and work towards changing teachers. To change mathematics instruction
in an effective way, however, it would be necessary to change teachers ideologies, given that ideas
and beliefs about mathematics and its teaching and leaming are part of a broader vision of the world
and cannot be separated from this wider web of ideas. Teachers teach according to their value-rich
visions of the world and, to deeply change matrhematics lessons, reformers need to challenge these
visions, forcing reachers to accommodate reform ideas instead of simply assimilating them.

Embora tentativas de reforma.as vezes consigam modificar a forma como professores ensinam, as

mudangas implementadas sdo, normalmente, superficiais, e representam uma colagem de novos

ajustes sobre a velha prdtica. Este artigo coloca que para a ocorréncia de uma reforma verdadeira em

educagio matemdtioa é necessdrio ir além da mudanga da prdtica e trabalhar no sentido de mudar os -
professores. Para efetivamente modificar o ensino de matemdtica, entretanto, seria necessério mudar
as ideologias dos professores, dados que idéias e crengas sobre a matemdtica, seu ensino e sua

aprendizagem, sdo parte de uma visd@o mais ampla do mundo e ndo podem ser separadas desta rede

maior de idéias. Professores ensinam de acordo com suas visoes e valores, e para modificar
profundamente as aulas de matemdtica ¢é preciso desequilibrar estas visées, forcando professores a

acomodarem as idéias de reforma ao invés de simplesmente as assimilarem.

Discussing efficacy and the current reform in mathematics education, Smith (1996) illustrates a
range of different reactions teachers have when faéing the challenge of change. He classifies one
type of teacher's response to calls for reform as "paste-on adjustment”, which he defines:

The reform combines a theory of mathematics content, learning, and teaching with some more
specific prescriptions for teaching (e.g. using manipulative materials or small-group problem-
solving). In response to strong suggestions that they "implement” the reform, some teachers
add these specific elements to their practice without addressing the more fundamental issues
that underlie and inspire them. (p.396)

These paste-on adjustments allow teachers to implement new teaching ideas in their classrooms
without having to deeply change their practices or beliefs. As Smith (1996) explains, "small-grotip

work, student projects, and manipulatives can be easily assimilated to views of content that

i

IThis paper is based on the author’s doctoral dissertation—directed by Frank K. Lester, Jr. During the doctoral program
and the research project, the author was supported by a scholarship from CNPq, Brazilian government.
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emphasize the standard rules and algorithms, the teacher's role of knowledge telling, and students’
roles of listening and practicing, leaving the pedagogy of telling fundamentally intact” (p. 396).

In a study that analyzed the implementation of the California Mathematics Framework (California
State Department of Education, 1985), Cohen and Ball (1990) noticed that some teachers added bits
and pieces of the reform document to their teaching scheme, developing what the authors considered
contradictory practices tha‘t combined elements and theories incompatible in essence. For them, the
document consisted of many different (important) ideas which could be "picked up in random bits
and then enacted in variously interpreted permutations of each bit" (p. 332).

Teachers, as is true of all people, "adapt recommendations instead of adopting them" (Darling-
Hammond, 1990, p. 341), and we have long learned that they interpret reform documents,
translating reform rhetoric into their own language and practice (e.g., Olson, 1981; Saranson, 1982).
However, as I see it, translations, interpretations, adaptations, contradictory practices or paste-on
adjustments exist because reform attempts tend to concentrate their efforts on changing teaching
without deeply addressing the more difficult issue of changing teachers. Therefore, teachers can
assimilate reform ideas without having to accommodate them in a new understanding of what
mathematics education should be and what its functions in schools and societies are. .

This papér addresses the tension between changing teaching and teacher change in the current
wave of reform in mathematics education. Based on the research I describe and discuss, I argue that
reform in mathematics education fails to look at teachers from a holistic perspective, taking into
consideration their ideologies, that is, their "value-rich philosophy or world view, a broad inter-
locking system of ideas and beliefs (Ernest, 1991, p.111). Consequently, reformers discuss
teachers' knowledge and beliefs about mathematics and its teaching and learning, neglecting to
consider that these beliefs are part of a wider web of ideas which forms the teachers' ideological
visions of society, of education and of their students, among other elements.

The Research
The Model of Educational Ideology for Mathematics (Emest, 1991) served as the theoretical

framework for the in-depth case studies of three elementary school teachers who were trying to
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"implement” the Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989).2 3
Through intense classroom observation and five uﬁstructured interviews with each teacher, one of the
goals of the study was to understand how the priinary elements of this ideological model existed and
influenced the classroom practices of the teachers, shaping the way they adapted the Standards.
These elements are: epistemology, philosophy of mathematics, set of moral values, theory of child,
theory of sodety, educational aims.

Emest (1991) says the first three primary elements of his ideclogical model are very abstract and
"ideologies must relate them to the experience of being a 'person living in society” (p. 131).
Therefore, he introduces the next two elements by explaining that they relate to the first three but are
connected to reality in more practical ways, and that many philosophers and educators have given the
child, society, or both, a central place in their theories. Finally, Ernest clarifies that educational aims,
the last of his primary elements, "represents the intentional aspect of the ideology with respect to
education, drawing together elements of the underlying epistemology, system of values, theory of the
child and theory of society” (p. 132).

Teresa M. Walker, Betty J. Finkel, and Julie Farnsworth?, the teachers who kindly agreed to
participated in this study, did not talk about their theories of child, society or education. The
elements fo their ideological visions emerged in this work through the study of their practices. After
coding and analyzing the data, using the Constant Comparison Method (Glaser & Strauss, 1967;
Strauss & Corbin, 1990), two themes seemed to most deeply influence what the teachers did in their
mathematics teaching: their perceptions of what their students need from school, as well as their
views of their own roles as educators. These themes Qhere then related to Ernest's primary
ideological elements.

These teachers did not have a clear epistemological position or a well-defined philosophy of
mathematics—elements that Emest (1991) classifies as more abstract. However, the three teachers
based their teaching on their moral values. On the more practical side, the teachers had well-

grounded working models for their theories of the child and of society. Although they did not

21n a previous paper we discribed the research project and presented initial data on one of the teachers that participated in
the study (Sztajn & Lester, 1994)

3The Standards should be understood here as an example of reform documents. The issues discussed in this paper can
shed some light in the reform discussion in general given that they do not specifically refer to this particular document.
4These are all pseudonyms.
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explicitly talk about such theories, their working models were present in the comments they made
about their students and what these children need from school and education in order to function in
society. Each teacher, therefore, combined her working models of children and society to form what
she called srudents’ needs. Concerning educational aim, each teacher's perceptions of her role as
educator constituted the practical representation of Emest's last theoretical element.

Although there is no space to present the data that serve as evidenée for the claims I make in this
paper’, in what follows I introduce a brief description of the teachers and their classrooms, analyzing
them from aﬁ ideological perspective. Finally, considering these three cases, I discuss the idea of
why reform is failing to change teachers—although it might succeed in superficially changing
teaching.

The teachers and their teaching .

When they were observed, Teresa, Betty and Julie worked in public schools in small midwestern
American towns and all the students in their classrooms were white. Teresa's classroom had 19
students, Betty's had 24, and Julie's 25, in schools that had about 300, 1000, and 500 students
enrolled, respectively. The school where Teresa teaches includes grades K through 5, and there are
two other third grade rooms. Betty's class is one out of six third grade rooms in a school that also
includes grades K through 5. Julie teaches in a 3-6 school where there are five fourth-grade
classrooms. These three schools, however, widely varied with respect to the socioeconomic
background of the children, measured by the percent of children on free or reduced lunches (40%,
21%, and 10%, respectively) and the educational credential of parents, based on the principals'
estimations and the teachers' opinions.

All three teachers had heard about the Standards before the beginning of the project, and all
claimed that they were trying to align their teaching to what they perceived as the new trends in
mathematics education. With different frequencies and styles, the teachers in this study used
manipulative materials, did some group work, tried to do problem solving and 5ttempted to
implement some alternative assessment methods in their classrooms . Except for Julie who said that,
whenever she could, she had always tried to incorporate these elements into her mathematics classes,

the other two teachers believed their classrooms were different because they had heard about these

5See Sztajn (1995) for the complete study.
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"new"” ideas for mathematics teaching. All three teachers, nonetheless, believed they were somehow
in the process of changing the way they teach mathematics.

These three classrooms, however, looked very different and the mathematics taught to the
students was definitely not the same. In Teresa's room, the most traditional of the three, children had
no voice or choice and all students always worked on the same assignment at the same time. Despite
some group work, Teresa's students mainly worked alone so that she could evaluate them and
compare them to the "norm" she expected them to conform to. Students were not free to move
around the room and all desks faced the blackboard. Teresa talked most of the time. She mainly
relied on the textbook to guide her teaching and problem solving was a fun way of "resting” from
drill—the real important thing to do in mathematics.

Betty's and Julie's rooms were very different from each other, but they were both less traditional

than Teresa's. In these rooms, children had some options and were allowed to participate in

. decision-making processes. They had a few choices concerning the work they would do and their

group work counted towards their assessment. The desks were either arranged in groups or in

different positions everyday. Students could move around as they pleased and they talked almost as
much as their teachers. Both Betty and Julie tried not to rely exclusively on textbooks for instruction,
creating and adapting activities to give to their classes. |

Translating the many elements of her ideological position into action in her classroom, Teresa
wants to teach to form responsible citizens. According to what she says, her poor studen.ts come
from disrupted lives, know very little, have learning problems, cannot behave, and their families do
not care about their education. These children, Teresa concludes, need to learn discipline,
organization, basic facts, and other skills that might help them become better integrated into society
and the workplace. As a teacher, Teresa believes it is her role to teach her students the social values
and norms their families are failing to provide them (a typical example of the educational deficit
perspective)..

By contrast, Betty teaches to develop thinking people. She has a wider vision of society as a
place where people need to work cbllaboratively and be problem solvers. She believes all children
can learn, independent of their socioeconomic background. For Betty, her students’ main need is to

become thinkers, capable of facing problems and working collaboratively to solve them. Therefore,

-
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her role is to help these "future thinkers” to become self-motivated learners who are able to gather and
critically analyze information. '

Finally, Julie teaches to promote the growth of happy and caring individuals. She says her
students come from families with professional backgrounds where parents are willing to put a lot of
effort and money into their education. Concerning both knowledge and .behavior, these children
come to school having already learned the "basics” at home. What these children need, according to
Julie, is to experience long-term, sustained, and challenging efforts. Julie believes her role is to
make school a place where her students have an enjoyable time and learn to be caring people, thereby
enhancing the future of the human race on the planet.

For Teresa, for Betty, and for Julie mathematics instruction has to help them accomplish their
broader educational goals. Their aims, however, vary according to their vision of society and to the
socioeconomic background of the students they deal with. Teaching poor children some minimal
skills to "properly” behave in society, or teaching children to cooperate in order to solve problems, or
teaching children from professional background how to endure long-term challengé and be happy,
Teresa, Betty and Julie have to teach very different mathematics. Therefore, despite reform ideas
such as manipulative materials, group-work, problem solving and alternative assessment, Teresa
students,who were mainly from low socioeconomic income families, learned to follow instructions;
Betty's children came from middle-class families and learned to think; and students in Julie's
classroom, who were from families in the middle- to upper-class range, learned to enjoy(their
learning experiences.

Discussion

Although teachers might paste-on some adjustments to teach according to what they see as tﬁe
new reform ideas, it is in their ideological visions that lies the core of what they do in their
classrooms. Therefore, to change mathematics education in schools, reform needs to go beyond

changing teaching and toward changing teachers. The interesting point raised by presenting these

" three elementary teachers is the justification each one of them gives for working the way she does. It

is in the teachers' reasonings that their ideological, value-rich perceptions of the world play an

important role, and it is toward the understanding of these reasonings that Emest's (1991) ideological

elements are helpful.
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Concerning the Standards, this research shows three teachers who knew very little about it and
interpreted and implemented what they knew in very different ways. This three teachers made the
document fit their own, previous perceptions of education. They assimilated the document without
having to accommodate their philosophies of teaching. Thus, what these teachers learned about the
Standards did not challenge their ideological visions. Quite the contrary, their ideological visions
shaped the possibilities of interpreting and implementing the Standards, allowing the teachers to use a
few of the teaching elements the document supports, without having to consider the more deep ideas
and beliefs which the reform movement espouses.

For each teacher, factors such as the school where she teaches, the socioeconomic backgrounds
of the children she works with, and her perceptions of what society expects from these children
influenced what she did when "adopting” the Standards. More specifically, these teachers'
perceptions of their students' needs and of their own roles as educators determined the way they
adapted the mathematics reform rhetoric to fit their previously existing visions of education and of the
world. -

As researchers, teacher educators, reformers, and so forth, the mathematics education community
needs to realize that teachers do not, and cannot, turn their ideologies off once their mathematics
lessons begin. Teachers also do not leave the world outside the door once they walk into the
classroom to begin their day. Members of the mathematics education community cannot continue
researching, educating teachers, or attempting to reform mathematics education without considering
ideological and social factors that affect mathematics teaching. Not only what one teaches and how
one teaches matter; where one teaches, why one teaches, and to whom one teaches are also of the
utmost importance.

These factors are ideological in nature and, unfortunately, they are not among the traditional ones
mathematics educators discuss when talking about change in ma'thematics’classrooms. To date, these
factors have not been part of the debate on reform in mathematics education, most probably because
they go beyond the traditional border of what we consider mathematics, its teaching and its learning
to be. These issues, however, need to be _addressed if we are to change teachers instead of

superficially changing teaching.

A
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IS THE LENGTH OF THE SUM OF THREE SIDES OF A
PENTAGON LONGER THAN THE SUM OF THE OTHER TWO SIDES?

Pessia Tsamir, Dina Tirosh and Ruth Stavy
Tel Aviv University

Abstract

This article reports on the responses of 289 students, K to 11th grade to
comparisons dealing with the sum of lengths of several sides of given polygons
with the sum of lengths of their remaining sides. Most participants answered
correctly when comparing the length of one side with the sum of lengths of the
other two sides in a triangle, or the other three sides of a quadrilateral.
However, the percentages of correct responses decreased when students had to
compare, for instance, the length of the sum of two sides in a pentagon with the
sum of the remaining three sides. In these cases, students tended to claim that
the sum of more sides (three sides in a pentagon) was larger than the sum of the
smaller number of the remaining sides (the other two sides of the pentagon).
These results.are in line with the intuitive rule: ‘More of A- more of B'.

Introduction

People continually undertake comparison tasks- trying to determine whether
two entities are equal or not equal with regard to a certain characteristic. While we
feel that our judgment takes into account only relevant information, in many cases
there are factors which unconsciously bias our judgment. For instance, when
comparing two points, one the intersection of two lines and the other the
intersection of six lines, students tend to include the irrelevant factor “number of
lines” when performing the comparison.

It was found that these interfering factors follow certain “intuitive rules”, for
example, the rule “More of A- more of B” (e.g., Stavy & Tirosh, 1994). Hence, in
many cases we hear such claims as: “the point of intersection of six lines is bigger
or is heavier than the point of intersection of two lmes” This appears to reflect an
idea that more lines create more weight and size.

The notion crops up surprisingly often in everyday situations- the more you
learn the more you know; the more you eat the fatter you get. What is even more
amazing is that this same factor influences the way scientific and mathematical
comparisons are conducted.

In mathematics and science, comparison tasks are used both as a means and
an end in themselves. As a means they serve to investigate students’ alternative
conceptions of scientific and mathematical notions. When asked to compare
quantities which are equal, by including an irrelevant characteristic and applying
the rule of more of 4 - more of B erroneous conclusions are reached (e.g., studies
on the development of the concepts of temperature: Strauss, Stavy & Orpaz, 1977,

o eter o 2
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actual jufinity: Tsamir, & Tirosh 1992 1994; fime: Levin 1982: point: Tischbein,
1993; Tsamir, 1997, angle: Foxman & Ruddock, 1984; Noss, 1987 Stavy, Tirosh
& Tsamir 1997; gravity: Gunstone & White, 1981 etc.).

Thus teachers should be aware of how this rule may interfere with students’
mathematical and scientific conceptions. Mathematics and science educators’
familiarity with this intuitive rule and with its influence can serve as a means for
both understanding and predicting students” alternative conceptions.

The ainy of the present study was to examine how the intuitive rule More of

A -more of B affects students’ performance of mathematical comparison tasks.
Students were asked to examine four polygons - a triangle, a quadrangle, a
pentagon, and a septagon- and to compare the sum of the lengths of several sides,
of each polygon to the sum of the lengths of the remaining sides of that polygon.
Our prediction assuming the intuitive rule More of A- more of B, was that in all
cases, students would tend to view the sum of the lengths of more sides as being
longer, even though this was true only in the cases of triangles and quadrilaterals.

Method
Subjects

Two hundred and eighty-nine students between age 5 and 17 sampled from
kindergartens, regular and advanced math classes in the Israeli public school system
participated in this study (Table 1). All 9th and 1 1th graders were from a high
school for generally average achievers. The “regular” 9th and 11th graders were
working on the second level, out of three levels of mathematics classes, while the
“high” 9th and 1 tth graders were math majoring.

Table 1: Number of participants from each grade level

Class: K 2nd 4th 6th 9th-R  9th-H 11th-R 11th-H TOTAL
No. Students 37 36 46 34 34 36 35 31 289
Materials

All participants were presented with the following four problems:

Questionnaire
Danny goes home. The drawing in each problem represents two possible routes both on a
horizontal plane. In your opinion, which of the two routes is shorter?

Problem 1 ;

In your opinion, route I is shorter / equal / longer than route H.
Explain your answer.

{) [
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Problem 2

éf\a

In your opinion, route [ is shorter / cqualr} longer than route IL.

Explain your answer.
Q" A
1

Problem 3
In your opinion, route | is shorter / equal / longer than route II.

Explain your answer.
< \: - =

[n your opinion, route 1 is shorter / equal / longer than route I1.
Explain your answer.

Problem 4

Procedure

One of the researchers conducted 37 individual interviews in a kindergarten.
Each interview lasted between 15-55 minutes. The other participants answered the
same questions but in writing. The written assignment took about 15 - 30 minutes.

Results’

I The Triangle and the Quadrilateral - The Length of One Side vs.
the Sun of Lengths of the Remaining Sides

As expected, almost all students from all grade levels argued in the cases of
the triangular and quadrilateral drawings, that the one-sided route is shorter than
either the two-sided or the three-sided routes (Table 2).

Many students offered no explanation to their judgments. When relating to
both the triangular and quadrilateral drawings, quite a number of participants of all
ages, who did justify their answer, correctly explained that “a straight line is the
shortest line between two given points” [2nd grader]; or that “In any triangle the
sum of lengths of two sides is always bigger than the length of the third side” [9th
grader]. When referring to the quadrilateral, some 9th and 1 1th grade math majors
drew a diagonal and justified their claim by twice using the above mentioned
argument, while others just ambiguously claimed that “this is a generalization of
the theorem relating to triangles”. A number of (mainly) 6th graders based their
answers on measurements they performed and others only counted the segments in
each route.
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Table 2: Students’ responses (%) to the triangular and quadrilateral routes
The Longer Route '

Triangle K 2nd 4th 6th 9th-R 9th-H 11th-R 11th-H
* TWO SIDED ROUTE 100 100 80.4 853 100 91.7 829 96.8
ONE SIDE - - 65 59 - 5.6 86 32
EQUAL - - 22 88 - - 5.7 -
NO ANSWER - - 10.9 - - 28 29 -
Quadrilateral K 2nd 4th 6th 9th-R 9th-H 11th-R 11th-H
* 3 SIDED ROUTE 81.1 972 71.7 824 97.1 88.9 85.7 96.8
ONE SIDE 108 28 87 59 - 5.6 29 32
EQUAL 81 - 6.5 118 29 28 86 -
NO ANSWER - - 13.0 - - 2.8 29 -

* correct answer

The typical justification of the K and 2nd graders participants, and quite a
frequent justification of 4th and 6th graders was that “more lines create a longer
route”. Several other students used the same line of reasoning to claim that *‘the
bigger the number of corners (turning points) - the longer the route”’. The latter
rationale was explicitly based on the intuitive rule: the more - the more.

Both formal reasoning as well as intuitive justifications almost always
accompanied valid mathematical judgments. Yet, quite surprisingly, there was a
small number of cases in which students incorrectly viewed the two routes as
being equal or even considered the single side as being longer than the sum of the
other sides. Most of these students gave no explanation. An unexpected aspect of
the more- more idea was found in younger children’s justification of their answer
that the two-sided route (or the three sided route) was as long as the one-sided
route. They argued that “both routes are equally long since they have the same
starting point as well as the same ending point”. Insinuating the idea of--The same
edge points implies the same length of lines connecting them. “Same of 4 - same
of B”-- as a version of the intuitive rule: “The more- the more”.

II.  The Pentagon and the Septagon - The Sum of the Lengths of
three Side vs. The Sum of the Lengths of the Remaining Sides

In the cases which of drawings representing the pentagon and septagon only
about 25% of the students in each grade level correctly responded that the three
sided route was shorter than the two sided route in the pentagon-shaped
drawing; and that the three sided route was longer than the four sided route in
the septagon-shaped drawing (see, Table 3). As before, most students did not
Justify their responses. Yet those who did provide explanations either said that it
seems shorter” (usually K and 2nd graders), or performed (accurate) measurements
considerations “/ have measured both routes and found this one to be longer” (4th

4-2m 229




to 11th graders).
Quite a number of the participants from grade 4 on, used their rulers in doing the
comparisons. However, some of these students performed hasty inaccurate

measurements, concluding that the routes were equal. Others just vaguely
claimed that “If seems that the two sided route is equal to the three sided one ™ [6th
grader], or ““Both start and end at the same point, therefore these must be equal
routes” [4th grader].

A response which was typical to mathematics majors was that the situation
described in these problems was inconclusive. About 10% of 9th high-level
students and about 35% of the 11th mathematics majors, analyzed the given
specific case from an (over)generalized perspective, claiming that it was impossible
to decide which sum was larger: “One cannot determine whether two sides are
larger than the other three or not. It depends on the given pentagon” [9th grader,
high level].

‘Table 3: Students’ responses (%) to the pentagon and septagon shaped routes
The Longer Route

Pentagon K 2nd 4th 6th 9th-R 9th-H 11th-R 11th-H
* TWO SIDEDROUTE 189 56 152 118 235 13.9 14.3 258
EQUAL 54 - 43 324 88 250 457 -
INDECISIVE - - - - 5.9 11.1 - 355
THREE SIDEDROUTE 757 944 674 529 529 472 314 323
NO ANSWER - - 130 29 88 2.8 8.6 6.5
Septagon K 2nd 4th 6th 9th-R 9th-H 11th-R 11th-H
* THREE SIDED ROUTE 13.5 11.1 130 294 147 194 8.6 226
EQUAL 54 - 174 235 88 167 343 161
INDECISIVE - - - - 29 111 - 355
FOUR SIDED ROUTE  81.1 833 58.7 44.1 529 444 457 194

NO ANSWER - 56 109 29 206 83 114 65

* correct answer

As predicted, a substantial number of students argued, in the case of the
pentagon and septagon, respectively, that the three-sided route was longer than
the two-sided one; and that the four sided route was longer than the three
sided one.. The most frequent justification presented at all grade levels, was that
“the bigger the number of sides - the longer the route created” [11th-R grader],
and “the bigger the number of turning points - the longer the route” [9th-R
grader]. Both explanations were in line with the intuitive rule. more - more.
Many participants also said: “/f seems shorter/larger”.

A number of 4th to 11th graders from regular mathematics classes presented
a combination of the rule “More of A - more of B”' and an (over)generalization of
the previous cases of the triangular and quadrilateral routes: “All the problems are
basically similar. [f one understands that ‘the two sides are larger than the third’,
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then three sides are larger than the other two ' is also true” [6th-R grader]. Some
used a more formal yet invalid phrasing: ““/t is actually an extension of the theorem
regarding triangles that: ‘In any triangle the sum of any two sides is larger than
the third side’; Accordingly ‘In any pentagon the sum of three sides is larger than
the sum of the other two sides’. As in algebra, adding an equal increment (1) to
both sides of a given inequation (2>1), preserves the inequation (3>2) [9th-R
grader].

Mathematics majors who justified the claim that “the three sided route is
longer than the two sided route” usually presented similar ideas in a more
sophisticated manner. An 11th grader claimed, for instance, that: *‘The pentagon
is a generalized case of the triangle. One should try to prove this mathematical
characteristic by using ‘induction’. The theorem is true for the triangle and this
should be grasped as a substitution of n=1 (one side is smaller than the sum of the
others). The pentagon is actually the case of n=2 (the sum of two sides is smaller
than the sum of the others); the septagon n=3 etc. Validity should be assumed for
n=k and proved for n=k+1".

Other 9th and 11th graders fabricated invalid “proof”, such as: *““In order to
prove that‘c+b<a+d+e one should draw two diagonals (x andy) from one
‘vertex. Three triangles are created and the following occurs: d+e>y, y+a>x
b

a
c

hence d+e+a>x+y but c+b is only bigger than x = d+a+e>c+b" [9th grader].
Discussion and Conclusions

Our findings strongly support our prediction. A substantial number of
students from all grade levels (including those majoring-in math) tended to view all
routes consisting of fewer sides to be the shorter ones.

" The questionnaire essentially presented two types of problems. The first
relating to a mathematically unconditional situation. Here, not only was the answer
determined by the specific drawing, a triangle and a quadrilateral, but also by the
generalized rule that the length of one side of a polygon is always shorter than the
sum of lengths of its other sides. This correct answer was consistent with the
intuitive rule More sides - longer.

Accordingly, almost all the participants who did provide an answer, correctly
claimed that, in both the triangle and quadrilateral drawing, the one sided route was
the shorter one. They justified their claims in a formal, general mathematical
manner; in a concrete way or by visual, intuitive means. It seems as if all
reasoning methods led to a single conclusion-- the correct answer. Yet, a few
students contrary to all previous reasoning, still viewed the routes as being equal or
viewed the shorter route as being longer. Their explanations were either irrelevant,
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involving false topographical conditions, or surprisingly, and in line with the
intuitive rule “Same of A - same of B”, claiming that equal routes are the result of
equal end points.

The second kind of problems dealt with pentagon and septagon shaped
drawings. Unlike the first set of problems, there is no mathematical rule on which
to base the answers. The comparison must be conducted for the specific case
presented. The drawing which accompanied each problem was meant to serve as a
concrete, visual clue to the correct answer, since in both the pentagon and the
septagon the route consisting of “more sides” was depicted as the shorter one.
However, the visual clue was ignored - the students usually did not measure the
lines but relied upon their intuitive grasp of the situation.

Naturally, by applying the intuitive rule of the more - the more (the less - the
less), in the pentagon and septagon drawings, the route consisting of fewer lines
was incorrectly declared by a substantial number of students to be the shorter one.
Even though this tendency to rely upon intuitive rules declined with age, it was so
powerful that still almost 20% of the 11th graders majoring in math made this same
error regarding the septagon, and over 30% regarding the pentagon.

To conclude, the intuitive rule, “More of A - more of B”’ seems remarkably
influential in directing students’ line of reasoning. 1t was more powerful than the
provided relevant drawing, which graphically presented the correct result, and also
more powerful than students’ geometrical formal knowledge. By using our
experience with this rule we can propose a reliable prediction of students’ problem-
dependent, correct as well as erroneous responses. Such an ability to foresee
possible intuitive triggers and obstacles, should serve as a tool for meaningful
instruction.
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INVESTIGATING CHANGE IN A PRIMARY MATHEMATICS
CLASSROOM: VALUING THE STUDENTS' PERSPECTIVE

Dianne Tomazos - Murdoch University

ABSTRACT

Data referred to in this paper are from a case study of one teacher's self-initiated attempt to
progressively change her approach to teaching mathematics in her year seven primary
classroom. While there have been many investigations of change in mathematics education,
this case study is unique because its focus is on interpreting change from the students’
perspective, rather than that of the teacher. In this paper the importance of giving the students
a voice in classroom research is first discussed and then demonstrated by reference to data
from the study. A particular instance is described which illustrates the subtlé way in which the
studenis' covert actions powerfully influenced their teacher's approach to change, a process
which would have been obscured and misrepresented if the researcher had not had access to
the students' subcultures.

INTRODUCTION

Current thinking about the nature of mathematical understanding and learning
requires a methodology for classroom study which is open to alternative
interpretations and which also takes account of the complexity of the
teaching/learning situation (Adler 1996; Bauersfeld 1992; Bishop et al. 1996; Clarke
1996; Cobb et al. 1992; Doyle 1990). From the teachers' perspective, a mathematics
lesson may be about the students developing a new mathematical idea and from the
researcher's perspective it may be about observing a particular form of interaction
between teacher and students. However, from each student's perspective it may be
about some distinctly different activity, which may or may not have anything to do
with engaging in learning the mathematical idea, or entering into any particular
form of interaction with the teacher. It seems then that if the researcher wishes to
investigate any part of the classroom milieu, there are dangers in limiting the

" viewpoint to the agenda of the teacher, or of the researcher, and ignoring the

multiplicity of agendas assembled by the students (Erickson and Shultz 1992; Hoyles
1982; Kouba and McDonald 1991; Woods 1990).

Changing the way the learning of mathematics is undertaken in schools has been of
central interest to mathematics educators for a very long time, and the difficulties of
implementing curriculum change at the classroom level have been well documented
(Delaney 1996; Ellerton and Clements 1988; Levenberg and Sfard 1996; Swinson
1995; Weissglass 1992). For the most part, however, the perspective taken in such
studies is that of the teacher, not the students (Erickson and Shultz 1992). For
example, in his research, Clarke (1995) drew attention to the "struggles, challenges,
and highlights” (p.183) teachers encountered as they attempted to use innovative
mathematics materials in their classrooms and listed twelve factors which he
suggested influenced their changing roles — yet none of factors listed related to
students. Was that because the students exerted no influence, or was it because their
voices were excluded from the study?

Certainly there are studies outside of the mathematics research community which do
suggest that students’ responses need to be considered when trying to implement or
understand classroom change processes (Hunt 1990, pp. 45-66). McQuillan and
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Muncey (1994) describe a large scale United States school reform project and
reports that students,
...have not been passive recipients of Coalition reform efforts at their schools. ... [There
were} numerous instances of students resistance (both active and passive). ... Some were

sceptical, distrustful, or outright rejecting of efforts to empower them ... [and sometimes]
were quite cynical about why a new opportunity was provided (p. 273).

In Britain, Woods (1990) describes how the teachers in his studies provided both
explicit and implicit information about their teaching style and expectations early in
the year. Students combined this information with their own preconceptions about
teachers' roles and responsibilities in order to construct "rules” which the teachers
tacitly agreed to follow.

The emphasis varies, of course, from classroom to classroom, but in all such instances the

agreement is implicit, and the teacher’s behaviour is constrained whether this is realized or

not (p. 5).
The methods by which students constrain a teacher's behaviour are many, from
outright non-compliance to more subtle subversive techniques. While the overt -
balance of power in classrooms clearly favours the teachers and the school system,
and most students are careful to avoid any overt challenge to this, Wood provides
evidence of covert power structures which students utilise to at least partially shape
their own learning environment. ’

In her research in Australian schools, Zevenbergen (1995) has revealed student
behaviour in mathematics lessons which parallels Woods' findings. She found that
while students learned, and appeared to conform to, the implicit cultural values of
the mathematics classroom, they had nevertheless "developed many elaborate
practices for appearing to comply ... but in actuality, resisting the values which are
integral to the classroom culture” (p. 562). Zevenbergen also found that teachers in
her study had no idea that students had developed such complex strategies for
subverting many of the mathematical teaching goals, while appearing to ‘overtly
comply with the classroom behavioural norms and expectations. '

These studies suggest that changes in teaching approach, as well as research into
such change, need to take more account of the students’ subcultures, which may
incorporate particular views about mathematics and schooling, the teacher’s role
and purpose, and their own roles and purposes. Hence the case study, from which
this paper arose, focuses specifically on the students' viewpoints in order to explore
the ways in which their actions and reactions may impinge on their teacher's efforts
to change their mathematics learning environment. The purpose of this paper is to
demonstrate, using just two anecdotes from the case study, how the inclusion of
students’ voices provides important insights into classroom learning situations, and
how their exclusion could result in research findings which are essentially spurious.

THE CONTEXT

The case study involved a year seven class (the final year of primary education in
Western Australia) in a government school. The teacher volunteered her class of
eleven to twelve year old students for three consecutive school terms of research.
While highly competent in the language area, she willingly admitted to a lack of
confidence in teaching mathematics, a profile which fits many primary school
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teachers in Australia. Nevertheless, she claimed to have moved away from a "boring
workbook" emphasis and improved her skills, but was still dissatisfied:
In language I've a very clear view of where I'm going, I know the purpose for what I'm doing
and I can think about what is the best way of doing it, but with maths it's not like that. I know
what I was doing before was no good, and I'm doing things differently now, but I still don't
really know what is the best way of teaching it, so I just try to do a lot of different types of
maths, using different resources, filling in the gaps, but I don't have any real sense of where
I'm going, I haven't got a 'big picture'. (26/4/96)
The teacher intended to begin using in maths lessons the kinds of collaborative
group learning processes she found to be successful in her language teaching. For
the first two terms of the cases study, the researcher did not directly have input into
the content or approach taken by the teacher. However, at the teacher's request, the
researcher provided the teacher with advice and resources to support a more
substantial change of approach during the final term, namely, a series of chance and
data investigations based on Lovitt and Lowe (1993). (The anecdotes included in this
paper relate to that period.) Data collection methods included lesson observations,
audio-taped group and individual interviews with teacher and students, student
journals, questionnaires and surveys. Students were informed of the researcher's
obligation to maintain confidentiality, both in talking to their teacher and in
reporting to the research community

The case study methodology involved elements of the 'bricoleurs' approach
described by Reid (1996) in his paper presented at PME20 on enactivist research, in
which it was recognised that the researcher also becomes an integral and changing
part of the complex system under investigation:

Just as an individual's structure changes in changing the context, so our expectations change
even as we observe, interview, and analyze according to our expectations (p.208).

Mousley (1996) also draws attention to the integral place of the researcher in terms
of his or her hermeneutic situation, ie the particular exegeses brought to an event
which "evolve as we re-develop our social contexts” (p. 36). Thus, the researcher's
evolving interpretations are not seen as aiming towards the discovery of some
definitive 'truth’ in the data. Rather, they are attempts to represent the phenomena
under investigation in ways which enable others to enter into.the experiential space
of the participants (in this case students, teacher and researcher) in order to more
authentically reflect upon the participants’ circumstances, and so better inform
future actions. The interpretations presented in this paper are offered in that spirit.

THE STUDENTS' PERSPECTIVE

During the interviews, students were given the opportunity to voice their opinions
about a wide range of issues associated with their mathematics learning
environment. For example, the following excerpt comes from a discussion session
with four students towards the end of the study. They were asked if their teacher's
decisions about mathematics lessons were ever influenced by students’ actions:

Kelly: Maybe sometimes, like Mrs B, she likes to make our maths really fun for us.

Angela: Well, she tries!

Kelly: Yes, but at least she tries for us, so I think maybe that a little bit she probably gets of it.
Researcher: What makes her decide to make it fun, do you think?
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Kelly: Because she's probably learnt over the years of her teaching that kids don't like it when
you just give them a page of maths, and like they groan and all that.

Therese:  But no teacher is perfect, and they're never going to learn everything that kids like.
Megan: And I think you coming also has sort of changed the way she thinks a bit.

Angela: And she probably feels threatened 100, because I mean, we talk behind her back anyway,
and we've got names for her and that, that I'm not going to say on tape, and but, anyway
I think she feels even more threatened by another adult.

Megan: I think she realises that we do talk about her and her ways of maths in these sessions.

While the question related to the impact of students' actions, the children went on to
consider other influences on their teacher and jointly constructed interpretations of
her motivation and feelings. Note how the students have taken account of the
researcher and attributed perceived changes in their teacher's thinking to the
researcher's presence, and also theorised about their teacher's affective reactions to
the research process. However, the mathematics itself seems not to be the issue here
— maths is maths, you could present it in a boring way, or a fun way, the choice
was the teacher's, and the implication is that teachers ought to provide, but couldn't
be expected to know, what students like. These students recognised that, unlike some
other teachers, theirs at least tried to make it 'fun’.

These responses were typical of the kinds of insights the students offered during the
study, and it was surprising to the researcher that, at only eleven and twelve years
of age, children were able to reflect with such clarity upon their teacher's thought
processes. From a methodological viewpoint it is most important to note that this
depth of reflection only became apparent during the later stages of the study.
Clearly it took a long time for the student/researcher relationship to develop to the
stage where students were willing to provide access to their personal world. What is
particularly important to report is that the earlier interviews appeared to have
provided this access at the time. It was not until after the later interviews that the
researcher realised the students were initially providing only limited and tightly
controlled-entry into their subculture.

In planning the study, the researcher had anticipated that aspects of the classroom
culture other than those directly related to mathematics lessons would form an
important part of the study. However, the researcher had not expected that the
students would continually redirect the discussions towards such a wide range of
personally relevant topics. Gender issues, power relationships between teachers and
students and among students, subversive classroom behaviours, comparative
teaching styles and parental influences were all discussed by the students at various
times in the later part of the study, and the relevance of these issues to the students’
mathematics learning has yet to explored. Nevertheless, the researcher has been
challenged to extend the boundaries of her research paradigm to encompass a much
broader than anticipated student agenda.

A SNAPSHOT OF STUDENT ACTION AND REACTION

A chance and data investigation, undertaken during the final term of the case study,
provides a simple illustration of the subtle way students’ subversive actions (of the
kind reported in Zevenbergen 1995) may satisfied their own purposes, yet also
influence their teacher's subsequent action, without either being consciously aware
of the nature of that interactive process.
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Students had begun an investigation into whether the different colours -of small
chocolate sweets called 'Smarties' and 'M & Ms' (trade names) were produced in
equal or unequal proportions. During the first lesson, students in pairs were given
two or three small boxes of Smarties and asked to consider the likelihood of any
box containing equal numbers of sweets of each colour. The initial part of the lesson
progressed smoothly. Students were clearly interested, they put forward a variety of
opinions and questions of their own, then proceeded to count and record the
contents of their boxes in order to compare the frequencies for each colour. The
teacher indicated to the researcher that she was very impressed with their response.

After each pair recorded their data, the next step was to collate the full class set.
Rather than choosing to quickly organise this herself (so the data could be compared
before the close of the lesson) the teacher asked the students to each collect data for
three of the colours from all the other students, having first demonstrated a simple
plot for one colour on the blackboard. At this point, what could be described as a
'divergence of purpose' between teacher and students began to occur.

Teacher:  You have to go and collect this data from each group or each pair. Yes, Aaron?

Aaron: How are we going to do that if everyone's asking each other?

In keeping with the earlier mode of working where student opinions were valued, it
seemed reasonable that Aaron should draw attention to what, perhaps, should have
been seen as a possible area of difficulty. The teacher, however, did not see this.
Teacher:  You're just going to be in a controlled manner and you're going to just go up and ask
someone. That actually is not really the issue at all, and if there are fifieen people talking

to you, Aaron, obviously then others are not using their common sense. I actually don't
want to get into that, that's not maths.

Aaron: I was going to0 say, we could maybe take, if you got it, put each one on pieces of paper,
you could just put them around the classroom and people could go to them.

Still under the apparent impression that there was room to negotiate, Aaron had

offered an alternative. Incidentally, note the teacher's statement, that's not maths!

Teacher:  Well, I'm happy for you to just go 10 each group and speak with each other, this is quite
an acceptable way of doing it, but I need for you to have three little diagrams that indicate

N how frequent these colours are occurring in each person's box.

Here the teacher did not reject the offer explicitly, but repeated her vision of how

the data collating should proceed, then cut further conversation by specifying the

expected end result of the activity. This signalled a noticeable change in the students'

responses, compared to those in the first part of the lesson. Procedural questions

followed, to which the teacher responded with authority.

Sandra: Is that rough or good? (Meaning 'rough draft’ or 'good copy’.)

Teacher:  Oh, rough at this stage.

Troy: Can we use textas

Teacher:  No, that is exactly how it must be set out (indicating the blackboard), so I would suggest
perhaps to take down this one quickly, just 10 get an idea of what your other colours are
going to look like, then move off and start collecting the data. Off you go, please.

: (14/10/96)

Finally, the teacher gave very explicit instructions to direct the students’ actions.
Following this directive, students began to move around the room in an orderly
way, happily talking, writing and apparently completing the task, with a high, but
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clearly acceptable noise level. The teacher remarked to the researcher that she was
pleased to-see evidence of this ability to work cooperatively and sensibly and
suggested that it would not have occurred earlier in the year; it was something she
had consciously built up with the students. She reasoned that Aaron's question was
probably the outcome of his absence on an overseas trip for most of third term. She
felt he had not had sufficient opportunity to practise the collaborative learning skills
she had focused upon during that time, and pointed out that the rest of the class had
quickly got themselves organised for the activity. The teacher was, however,
somewhat perplexed that after ten minutes, none had completed the task (which she
had viewed as very simple) and she expressed concern that it would have to be
continued into the next lesson.

In her reflections following the lesson, she said she felt sure the students enjoyed it,
but, in view of the fact that none had completed the data collation by the end of the
lesson, she thought perhaps they'd not understood the mathematical idea in the task.

It was not until students were interviewed that some insight into those ten minutes
emerged. Students were asked if there were any changes the teacher could have
made to the lesson. Several groups referred to the data collation as the point where
they either lost interest or felt it was too difficult logistically to complete.

Aaron: Probably the only really boring thing was the Smarties one when you had to go around
the whole class and just ask everyone. It was, you know, noisy and rowdy, and that.
Carl Yeah, that was probably the worst part of it. (15/10/96)

A group of girls had initially attempted to collect the data but found they could not

keep track of the pairs, and (along with many others in the class) resorted to

subversive action. They feigned compliance to the teacher's instruction by overtly

‘working' cooperatively and sensibly, but covertly, they falsified their data and

exploited the social opportunities made available by the situation.

Karen Yeah. In the end we didn't, we just wrote down any old thing and just did nothing really,
Just talked about, like, other stuff and that, when she wasn't around.

Researcher: Not about the Smarties?

Sandra: No, anyway, everyone was doing that, faking it, not just us. (15/10/96)

It is important to reiterate that neither the teacher nor the researcher had realised at
any time during those ten minutes that most of the students had actually disengaged
from the teacher's purpose and begun to follow their own interests. Nevertheless,
even though the subversive actions themselves went unnoticed, the teacher was
influenced by the outcome of those actions. The teacher modified the next lesson
according to her interpretation of the students' failure to complete the task, which
she felt was related to aspects of the mathematics, rather than any procedural
difficulties. She had decided they needed more structure to the investigation, in
order to better focus on the mathematics, so constructed an instruction sheet for the

students. Her introductory comments revealed her change of approach:
Teacher:  OK as you know yesterday we started a little bit of an investigation and we had a little bit
) of fun with a couple of boxes of Smarties, well the fun will continue, but there is a
purpose for all of this and you'll see by looking at the sheet that we are trying to achieve

something, so just follow as I read the first part. The actual task is split up into five parts
and we are going to work our way through those five parts, with the culmination of this
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particular aspect by Monday. So it really is a time for really focusing, listening and
getting on with it, all right? : (15/10/96)

The teacher proceeded to modify the initial intention of the investigation and,
although the students still saw the sequence of work that followed as being distinctly
different than previous mathematics lessons, the initial momentum had been lost.
For the most part, the divergence of purpose between the teacher and students
widened during the following lessons. In the weeks that followed, the students
expressed concern that they were learning little or no mathematics, and many said
the activities were becoming boring and repetitive. Nonetheless, they found ways to
convey enjoyment of the activities to the teacher, while confessing to the researcher
that their enjoyment was in having the freedom to pursue their own social interests
in their pairs and groups, while feigning attention to the tasks. Throughout this
period the teacher struggled to adjust her methods in order to better develop the
mathematics. The students, though, had effectively disengaged from this purpose
and continued to operate in ways which were difficult for the teacher to interpret.

CONCLUDING DISCUSSION

Undoubtably the establishment of a sound theoretical framework for such research
greatly assists the development of understanding (Clarke 1996). Contructivist
theories of learning (Bauersfeld 1992; von Glasersfeld 1991) have powerfully
influenced the way research in mathematics classrooms have been conceptualised in
recent years, requiring as it has a re-focusing on and valuing of the child's way of
doing and thinking mathematics, as well as the social influences on this within the
classroom culture (Cobb et al. 1992).

However, it seems that constructivism has become a limiting theory for some types
of classroom investigation (Confrey. 1995a). Although the child's thinking processes
may be seen as central in constructivist research, usually what is of interest is only
those thinking processes which relate to the learning of the particular mathematics
under investigation, ie the focus is on the agenda of teacher and researcher. The
assumption seems always to be that the students are willing and active participants in
that agenda. But, as Zevenbergen (1995) and Woods (1990) have suggested and this
paper illustrates, it is often the case that students disengage themselves from their
teacher's purposes and proceed to follow their own diverging goals. The
remarkable feature of this is that the process can be invisible to teachers and
researchers alike. If these subtle complexities are to be exposed and understood
however, new theoretical frameworks which are able to account for the students'
alternative agendas are needed.

Enactivism, as discussed by Davis (1995) and Reid (1996), seems to provide a
promising theoretical starting point. There is insufficient space here to describe the
theory, but essentially it focuses on the complex and fluid interrelationships between
organisms and their contexts, and does not privilege any one perspective over
another. Reid (1996) also points out that, unlike 'theories of which implicitly claim
to represent models of some existing reality, enactivism is a 'theory for' ieitisa
theory developed for a purpose, and its "usefulness in terms of that purpose ...
determines ... [its] value" (p. 208). For these reasons, it appears to be a theoretical
approach particularly appropriate for the purpose of incorporating students' voices
into the growing body of educational research into the learning of mathematics.
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STUDYING CHILDREN’S ARGUMENTATION BY INCORPORATING '
DIFFERENT REPRESENTATIONAL MEDIA

Despina Potari, Triadafillos A. Triadafillidis,
University of Patras University of Thessaly

In this paper, we investigate children's argumentation while assigning meaning in
different learning situations. The activities used in the study were initiated by the
haptic exploration of 3-D objects and integrated verbal, written, and 3-D forms of
representation in the field of geometry. The initial results suggest that argumentation
is an ongoing process of developing intuitions and revising interpretations.

In the seventeenth century, Vico identified language as the human institution that
makes possible the formation of societies. Language, according to his view, was not
simply a tool for human communication but a constitutive element of human reality.
The recent “linguistic turn” in the human sciences has led to the reconsideration of
Vico’s position and to a broader questioning of the distinction between language and
reality as well as between mental and physical activity, consciousness and the material
world (Foucault, 1993; Bakhtin, 1981, 1984; Williams, 1977). As a number of recent )
commentators have pointed out (Rotman, 1993; Walkerdine, 1988), the resistance to
thinking of mathematics as bound up with other linguistic practices might be attributed
to both disciplinary and social prejudgments.

With data from a classroom experiment, this paper argues that the development of
geometrical thinking can be better evaluated and enhanced if the place of linguistic
representations and metaphors in mathematical education is studied. We concentrate
our attention on the ‘potential value that different modes of communicating
mathematical understanding might hold for children. Specifically, we examine
children’s verbal and written descriptions arising during the haptic exploration of
three-dimensional objects and the construction of physical models based on these
written descriptions.

In teaching geometry, vision is frequently considered to be dominant over other
senses. A number of studies have indicated the limitations of this prioritization
(Clements and Battista, 1992; Fischbein, 1993; Hershkowitz, 1989; Vinner, 1983).
Overcoming these limitations may be achieved through the development of ways of
thinking to complement perception (Fischbein, 1987, 1993; Michotte, 1991; Parzysz,
1988; Wittgenstein, 1967). This ‘fusion’ of conceptual qualities and spatial
characteristics has been attempted in various ways. For instance, haptic exploration
of geometric shapes, by imposing an interruption to visual immediacy, joins
visualization with action (Piaget and Inhelder, 1956; Triadafillidis, 1995). Constructing
three dimensional models of objects is another approach which requires a

4 - 230

Q L



comprehensive mental representation of the object along with the analysis of the
- single components (Bishop, 1988; Marrioti, 1989; Potari and Spiliotopoulou, 1992).

Talking to oneself and others is also crucial in achieving control over geometric
images (Pimm, 1995). Verbal representations may relate to instrumental or relational
understanding (Byers and Herscovics, 1977; Skemp, 1979) or to an intuitive
comprehension of a situation. Writing about mathematical concepts demands
commitment both from the writer’s side in order to communicate his/her
understandings and from the reader’s in order to assign meaning to other pupils’
mathematical records (Pimm, 1987, Rotman, 1994). Writing then might be proposed as
a means to heighten awareness of thought processes and conceptual relationships, thus
facilitating reflection and ownership of mathematical knowledge (Connolly, 1989;
Shepard, 1993). '

The importance of integrating different media has been acknowledged in
mathematics learning. This has been especially exemplified by the use of multiple
representational genres in computer environments (Kaput, 1992; Schwartz and
Yerushalmy, 1995). Other researchers have studied pupils’ mathematical performance
and strategies when they integrate visual and written forms of representations (Ben-
Haim, Lappan and Houang, 1985; 1989; Gaulin, 1985). In the present study, we
combine written and verbal forms of representations in learning situations that include
haptic exploration and the construction of models of three dimensional objects. We
approach this aim by exploring children’s ‘argumentation’ while trying to produce and
interpret texts carrying mathematical meaning,

Methodology

The study is a classroom teaching experiment which took place in a primary school in
Patras, Greece. It falls within the ethnographic research tradition (Wolcott, 1988) as it
attempts to address the classroom environment in which children worked on the
activities. We consider not only the ways in which pupils themselves assigned
meaning to the activities, but also the ways in which these understandings and
intuitions were communicated among pupils, in group- and in whole-classroom
arrangements, and between pupils and the teacher. We encouraged teachers to be
actively involved in the study, introducing the activities to their class and assisting in
the organization of the work throughout all the phases. This was not part of an
attempt to situate ourselves as external observers. Leaving room for teachers’
initiatives provided an opportunity for us to investigate the meaning that they
themselves assigned to the activities.

We argue that the construction of robust geometric concepts may be enabled by
learning environments that encourage assigning meaning to, and conveying meaning
through, various forms of textual representation. Texts designate any configuration
of signs that is coherent and comprehensible to a group of users, irrespective of the
form these signs may have (Hanks, 1989). Texts then can be written, verbal, or
material constructions (a painting, a sculpture, a photograph, a written composition, a
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poem read aloud), according to the medium chosen by the user in order to
communicate his/her emotions, ideas, perceptions, intentions. Assigning meaning to a
text requires the active engagement of the interpreter. Equally important is the
involvement of the person who creates the text, in achieving a coherent representation
of his/her ideas, intuitions, or understandings according to the conventions determined
by the medium chosen for communication and the context in which communication
takes place (Hanks, 1989; Ingarden, 1973).

Two classes, a fourth grade of 20 pupils (8-9 years of age) and a fifth grade of 22
pupils (9-10 years of age), participated in the experiment. The classes were informally
visited for two weeks before the main study to get to know the classroom environment
and familiarize the teachers with the materials we planned to use. The children worked
mainly in groups of four, which consisted of two pairs that worked separately to
produce the textual artifacts for each activity. All sessions were video-taped and the
discussion in all groups was tape-recorded. In addition to the authors, three
. postgraduate students from the University of Patras participated as group observers.

The study consisted of four phases each lasting for ninety minutes. To prevent
pupils from seeing the objects while exploring them, ‘feely boxes’ were used (see
Triadafillidis 1995 for a description). Phase one acted as an introduction to the ‘rules’
of the game. An object was drawn randomly from a bag full of geometrical solids
made out of cardboard and other objects from everyday contexts. A volunteer was
assigned with the task of haptically exploring the object and answering to various
questions asked by the rest of the class about its features. The rest of the class could
see the explored object. In a variation of the game, the object was not visible to the
class. Pupils then had to ask the volunteer questions in order to guess the type of
object that was in the feely box.

In the second phase, each pair within a group had to explore haptically a plastic
vinegar bottle or a.glass bottle of soda and produce a written description of it. The
objects consisted of cylindrical and conical surfaces. The written reports were
exchanged and used by the other pair of the group to construct the object out of
cardboard. Therefore, we cautioned pupils to include in their descriptions as many
features of the object as possible. Disclosing the name of the object, for those who had
recognized it, was not an appropriate clue. In the third phase, pupils worked in the
same manner, only on different objects made out of multilink cubes in different
arrangements. These constructions formed cubes made of three layers but with some
pieces missing. In this phase, the children were given multilink cubes to build the
object described in the written report. At the end, in both phases, the initial shapes
were shown to the children. Each pair then had to evaluate their own constructions
and comment verbally and in writing on the other pair’s written description. In the
fourth phase, we discussed with the whole class two written descriptions, one for the
vinegar bottle and one for a cubic arrangement, employing clues that pupils had used
in the two preceding phases. This encouraged children to reflect on their own work
and voice personal opinions concerning their choices.
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Analysis

The whole process outlined in the methodology section aimed to turn children’s
attention’ in the communication of their mathematical understanding. The written
reports served as a way for the children to reflect on their verbal communication and -
become conscious of actions performed during the experiment. By requesting that the
students construct objects only using information given in the written reports, we
emphasized the importance of producing a coherent, concise and detailed description.
Considering the objects used in the study as symbols (Pimm, 1995), we would
characterize the haptic exploration by the pupils as a process of signification in which
meanings emerged through the use of formal, mathematical, or informal, metaphorical,
signs. In our analysis, we attempted to study these meanings through children’s
argumentation as developed in the different phases. As defined by Krummheuer (1995:
p. 229) argumentation can be considered “as a social phenomenon, when cooperating
individuals [try] to adjust their intentions and interpretations by verbally presenting the
rationale of their actions”.

In the present study, we encountered several different types of argumentation. In
the first and fourth phases, argumentation occurred in the setting of the whole
class discussion. In -the first phase, this was expressed through children’s
questioning while in the fourth phase through children's reflections and
Justifications concerning their work. In the other two phases when they worked in
pairs or in groups, children’s activities were more goal-directed and their
argumentation was marked by the negotiation of opinions within pairs and by the

. defense of these positions in groups especially during the construction ‘and
evaluation process. The result of these various types of argumentation was
expressed in verbal and written forms and in the constructed physical models.

For the purposes of this paper, we will demonstrate the types of argumentation
used in the classroom discussions and in the work of one group from fifth grade.
We will proceed with a description of aspects of children’s geometrical thinking
about solids evident when in their production and interpretation of texts.

Initial whole class discussion:

In the children's questions during the familiarization phase, we identified a
number of “good reasons” (Alro and Skovsmose, 1996) they developed in their
classroom interaction. In the fifth grade, children initially asked questions about
the physical characteristics of the objects and their possible function: “What is it
made of?”, “What is its color?”, “What is it used for?” “What does it look like?”
are some examples. These were followed by questions concerning geometrical
aspects such as shape and size: “How many surfaces does it have?”, “How many
angles?”, “How many equal parts does it have?”, “How big is it?”. This transition
from contextual to mathematical questions was encouraged by the teacher's
intervention at a stage where the children appeared to have exhausted their
repertoire of questions. In the fourth grade, there was no such transition point as
these two types of questions were frequently alternated. A small number of
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children in both classes utilized their personal everyday experience to describe the
objects : “It is like a gift box”, “It looks like a glass object which has a blue liquid
inside”. One reason that the children did not use everyday metaphors might be
that they knew that they worked in a school, or particularly a mathematical,
environment.

The questioning process seemed to be greatly influenced by the way that the
teachers themselves interpreted the activity. In encouraging the students to
produce correct and swift responses, the fifth grade teacher demonstrated a
traditional attitude. When he intervened, he said things such as: “We'll see in the end

. in how many of your questions he managed to answer correctly”, “Just say a
number (angles of a tetrahedron), any, to check it later”, “Allow him two minutes
to reply”. This response to children’s questions and answers demonstrated a rather
superficial consideration of the activity. On the contrary, the teacher of the fourth
grade adopted a less directed teaching approach which allowed children to
express their personal intuitions and strategies. For example, a child who
haptically explored the number of surfaces of a metal mould for baking cakes,
which had the shape of a cone’s frustum without bases, replied that it had two
surfaces. From the discussion that followed, it appeared that the children who
agreed with this position had only considered the physical characteristics of this
object. The teacher furthered the pupils’ thinking by encouraging them to construct
this shape with a piece of A4 paper in order also to consider its geometrical aspects.

Working in groups:

The second and third phases were characterized by the revision of arguments.
This was partly due to the fact that different representational media were used.
First, the children had to negotiate their opinions of haptic exploration of the
objects to their partners. In one pair, the written report that was produced was a
collection of individual opinions. On the other hand, the written report of the
other pair reflected the children’s agreement which was the result of verifying
verbally and/or haptically their opinions. In one pair the written report
emphasized the physical characteristics of the objects while in the other more
emphasis was placed on geometrical aspects, especially of the cubic arrangement.
Points that reflect their geometrical thinking concerned the size of the objects, the
relation between parts and whole, and the way that the object could be
constructed. For example, children used qualitative ways of appreciating the size
of the objects. This started with a rough estimation such as: “small”, “medium”
or “large”, combined with a.comparison the a familiar equivalent unit: “It has the
same size as a washing-powder container”. Finally, the feely-box itself, was used
as a measure for comparison: “It is much smaller than the feely-box”. Both
written reports appeared as a transcription of pairs' verbal interactions and they

-did not give a coherent description of the object.

The processes of interpreting the written text, building the object and
evaluating the report were all interrelated. Children's actions were shaped by, and
reshaped each of these processes. In particular, children had to agree on the

'
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information on which they would base their construction. By continually
evaluating the results of their actions they were assigning new meaning to the
written text. The criteria for judging the other pair's report reflected the
difficulties they had in building the object but also revealed a tendency to look
for information that they themselves had included in their reports. The comments
of one pair were of the “right-wrong” kind, consonant with teacher's
expectations, while the other pair's comments were more specific and
explanatory. The comparison of their constructions with the initial objects
provided an opportunity for reflection. This was at first expressed as a defense of
their decisions which later on developed into a recognition of some of the
inadequacies of their description. By studying the solids which the children
produced, we identified differences arising from the nature of the initial objects.
For example, the construction of the two bottles passed from two- to three-
dimensions by the use of nets for each surface of the object, while the cubic"
arrangements required working in 3-D as they were build with multilink cubes.

Final whole class discussion:

In this phase, the children were more critical of their judgments. They tended
to seek for a coherence in the written text which we asked form them to evaluate.
They often singled out redundant statements: “Sir...sir a cylinder always has .
curves.... | mean if we relate it with the previous (statements)”. The fifth grade
children rejected statements that described the physical characteristics of the
objects and looked for more formal, mathematical expressions. The fourth grade
children, on the other hand, developed geometrical reasons based on the
metaphorical aspects of the descriptions. For example, the statement “It has a
whole in the middle, like a skylight (a cubic arrangement)” led to a concretization
of an intuitive appreciation of the shape which was “a cube from which we have
taken out a few small cubes”.

Concluding Remarks

Children's argumentation was an ongoing process with different expressions in
each phase. These were shaped by the classroom climate that the teacher
promoted, by the forms of representations and the nature of the activities. It
appears from the study that children attributed a complexity of meanings to the
objects and their properties. This complexity was demonstrated by children’s
tendency to consider not only geometrical elements of physical models normally
used in the mathematics classrooms but also their physical or functional
characteristics. The study also revealed children's personal intuitions about the
properties of three-dimensional objects and how these intuitions developed
during the experiment. Haptic exploration seemed to encourage the formation of
children's geometrical understanding and intuitions thus complementing
perception. Natural speech, writing, signification, sense, meaning, interpretation,
and different textual representations, were all considered as aspects of children’s
argumentation. They may all be welcomed as linguistic practices that could
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enhance our understanding of the development of geometrical thinking. By
further analyzing our data we hope to extend our research to the role that age

- and children's metaphors may play in the development of children's geometrical
thinking and argumentation. .
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PERCEPTIONS OF UNFAMILIAR RANDOM
GENERATORS - LINKS BETWEEN RESEARCH AND
TEACHING

Kathleen Truran

University of South Australia

Rene Ritson
The Queen’s University of Belfast

This paper reports some findings from two independent studies, one in Northern
Ireland, the other in South Australia, into young children’s understanding of the
behaviour of unfamiliar Random Generators (RGs). Our findings indicate that prob-
ability understanding is often influenced by the physical properties or appearance of
RGs. Sometimes it is their physical arrangement in a container that influences res-
ponses. Teaching of the topic depends on teachers being aware of these miscon-
ceptions are before planning for teaching.

FOCUS OF THIS PAPER

The introduction of probability as a mathematics topic in primary classes has been
encouraged by new curriculum documents in many countries in the Western world
(NCTM, 1989; DES, 1991; AEC, 1991; NZ. Ministry of Education, 1992), and this
has meant that for the first time children’s understanding of chance events is seen as
part of the whole mathematics curriculum. The writers of the Australian National
Statement : '

.. recognise that misconceptions about chance processes are widespread,
and that many become established while children are still quite young and
are then difficult to overcome. (AEC, 1991, p.163)

However, this movement towards the inclusion of chance events has meant that

many ... teachers find that they are not adequately prepared by their own
education to teach these topics. As well, mathematics educators ..: have not
ventured far in studying how children can best handle the topics in these
new areas. (Watson, 1995, pp. 120-121)

The majority of curriculum documents lack reference to children’s learning in the
area of probability and generally consist of ‘outcome’ statements, which for many
teachers provide one of the few resources for planning teaching programmes, e.g.:

Analyse simple experiments (e.g. those involving single coins, dice and
simple spinners); make a systematic list of possible outcomes and assign

. simple numerical probabilities based on reasoning about symmetry.(AEC,
1991, p. 170)
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This activity is for Years 5-7 students but there is no indication of the complexity of
this task nor the level of understanding of the behaviour of RGs necessary for a child
to be able to tackle such problems in a systematic and developmental way.

In Australia one other support document for teachers, published by the Curriculum
Corporation isWork Samples which outlines lesson plans, and suggestions for each
teaching strand. The primary Chance & Data segment focuses only on sorting act-
ivities and some games based on dice, spinners and coloured blocks. No lesson plan
suggests comparisons of outcomes of these games or comparisons of related RGs.

Yet during Ritson’s study some children aged 10-11 years were specifically taught, in
preparation for an examination, that there is an equal chance of getting any number
on a die. But shortly after these examinations Ritson questioned these children about

* the outcome of rolling one die. About one third of them had reverted to their original

E

perceptions about dice.

This is a very important finding which is supported by (Bramald,1994, p.85) who
made the observation that;

. one of the root difficulties associated with probability concepts appears
to be the lack of transferability of pupils’ curriculum based knowledge and
understanding. Could this be that this is caused by the urge to get children
to work too quickly with estimates of probabilities which assume an
underlying symmetry of outcomes.

Ritson’s is one example of the absence of the few linkS that are being developed
between research and practice. Green (1982) and Fischbein (1975) both consider that
even with a carefully structured teaching programme, the understanding of prob-
ability is often poorly understood, and the view that structure holds the key to
understanding may not be valid.

FOCUS OF ANALYSIS

We have both found that many children as old as twelve years, when asked, for
example, ‘when an ordinary 6 sided die is thrown which number or numbers is
hardest to throw, or are they all the same?’ will respond confidently, ‘all numbers
have the same chance’. The same children, however, when shown a 12 sided die and
asked the same question, frequently specify that one number is easier to throw than
others. Clearly knowledge of one RG does not transfer simply to another.

So part of our research has been to investigate young children’s interpretations of the
behaviour of RGs in order to understand the salient focus for them. Ritson’s study
was devised partly to investigate the changes in student perceptions of different RGs
over a period of time; while Truran’s study has investigated students’ perceptions of
five sets of common, related RGs with different embodiments and has produced and
trailed in-service material for primary teachers.

We shall show how our findings have made clear three important factors about child-
ren’s interpretations and perceptions of RGs. The physical properties of RGs, and the
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physical arrangement of RGs both have significant influence on children’s percept-
ions. Preferences about the objects to which the questions referred also influenced the
children’s responses. We believe that the first two points present new findings, and
that all points must be considered in future curriculum planning and in-service
teaching.

We suggest that there should be more informal discussion about the features of RGs
used in the classroom, and that the children are exposed to experience with different
and unusual RGs as a matter of course.

SUMMARY OF SOME PREVIOUS RESEARCH

What is seen as the classic investigation into children’s understanding of probability
is that of Piaget and Inhelder (1951) who analysed children’s thinking about prob-
ability into stages of development, which they argued followed a developmental
sequence, as a continuum, culminating in a level that they describe as formal
understanding. Green (1982), in a survey of 3000 secondary school pupils aged 11-
16, showed how their development indicated a hierarchy that was modelled on
Piaget’s. But Green also concluded that most English students finish secondary
school without achieving the level of formal understanding.

Kahneman, Slovic and Tversky (1982) believed that even adults reasoning is intuitive
and characterised by what they described as heuristics; intuitions, the most common
of which are which recency and representativeness. Fischbein (1975) showed that
some intuitions and biases in young children’s thinking are important in helping their
pre-formal probabilistic thinking. He believed that these biases, which are the result
of personal experience, can be overcome by an appropriate teaching programme

Lecoutre (1992), on the other hand, suggested that children used what she called an
‘equiprobability bias’. She claims that children view as chance ‘naturally’ equipro-
bable; and that this bias is as important in understanding their thinking as those biases
described by Kahneman et al. '

Random Generators play a fundamental role in the study of probability and it is often
taken for granted that children see these devices as we do. However, Amir and -
Williams (1993) claimed that the way children see RGs depends on their culture, and
their previous experiences and perception of the physical properties of the RG and
the way that one handles these devices. Zaleska (1974) suggests that the perception of
independence of RGs is influenced by the concreteness of the generator and their
ability to operate it themselves ... [and] by their familiarity with the generator. Amir
and Williams illustrated this claim in their own study by describing perceptions of
coins by children whom they interviewed: some saw coins as linked with cheating;
others with experience and although they could not explain why, some suggested that
some people are luckier than others.

In our studies we have heard many of the explanations similar to those discussed
above. Our concern is that these be recognised in some formal way, leading to their
eventual acknowledgment by curriculum planners and teachers, so that appropriate
modifications of curriculum documents can be made. We believe that the things that
children say to us in interviews are not just ‘engaging and cute’, but real indicators of
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the children coming to an understanding of probability thmkmg as well as mdlcators
for curnculum planning.

DETAILS OF BOTH STUDIES

The studies described below involve children from a range of schools, ages, and
socio-economic background. While different approaches and random generators were
used, both studies are similar in structure and indicate similarities in the children’s
responses as well as evidence of returns to basic beliefs when confronted with
different or unusual RGs.

Ritson has conducted a study of 46 children aged initially from 5 to 9 years, over a
period of almost three years during which each child has been interviewed indi-
vidually on twelve separate occasions at two month intervals during each academic
year. These interviews, which were recorded on video, all began with a game
involving the random. generator which was to be the subject of the interview. The
main threads followed throughout the study were children’s perceptions of the likely
outcome of:

* a variety of rolling dice - standard, .or marked with a variety of numbers,
colours, letters and shapes: dice with different embodiments and in some
questions more than one die was used.

*  spinners yielding equal and unequal probabilities;

* sampling with replacement from bags containing equal and unequal
numbers of coloured beads; .

* sampling with replacement from cards marked with ‘blobs’ of different
colours and sizes. '

Very few of the children had had any previous experience with either spinners or
sampling so it is believed that their perceptions in these areas have not been
influenced by any specific teaching. All of the children have had experience of
playing board games with a single 1-6 sided die, though some have had more
experience than others.

Truran has conducted group tests administered to whole classes in a normal
classroom situation, to approximately 300 children from Years 5 and 7. Individual
interviews were conducted with six children randomly chosen from each of the Years
5 and 7 classes previously tested. Year 3 children were considered too young to cope
with a group test, so six children were randomly selected from five Year 3 classes
and interviewed individually. The study investigated children’s responsés to the
behaviour of a range of RGs:

*  coins;

*  raffle tickets;

» 6and 12 sided dice;

*  spinners with 6 and 12 segments;

*  urns with 6 or 12 numbered table tennis balls.
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Both studies rely on a significant number of individual interviews which were
recorded. This method was used because in both studies young children were
involved and it is believed that they respond best to a situation where the interviewer: .
... asks the child to verbalise his thought, to give reasons for his actions and generally
to reflect on what he has done. ... two types of reflection are often involved. One in-

volves process,...a second involves the rationale for a solution. (Ginsburg, 1981, p.
6)

Ritson’s additional use of a video made not only the verbal response clear, but also
indicated the child’s physical demeanour during the interview and helped to clarify
situations when the child’s explanation was based on pointing to an object or
demonstrating a strategy.

COMMON ELEMENTS IN BOTH STUDIES

It is not surprising that in both studies young children, trying to make sense of their
world, should exhibit similar beliefs regarding RGs over which they have no control.
It has been observed by both researchers that the children’s answers often do not rel-
ate to mathematics, but rather to impressions, prior beliefs and illusions about the
physical attributes of the RG and its behaviour.

The children involved in both studies have had limited experience with some of the
RGs used, and none with others, for example Ritson’s ‘blob’ cards and Truran’s urns.
The urns are similar in context to the ‘Lotto’ urns that are shown on television but
none of the children interviewed indicated that they could see any connection bet-
ween the two.

Three examples of cues and reasoning as a basis for their responses, taken from both
studies, will be presented as evidence of the similar responses being used by children.
The following are examples of different, but similar interpretations. The physical
‘separateness’ of the RGs was seen as being important in making a decision.

- A common element observed in both studies was that physical properties or appear-
ance of RGs were significant in their outcomes

» One of Ritson’s questions, asked the children to consider whether there was a
better chance of getting a number that they wanted with a standard die or with
six disks numbered 1-6

KMc( 9:6)

The disks are better because they are separate and can all jump about
in the box, but the numbers on the dice can’t move.

Truran replicated a question used by Fischbein et al (1991) which asked children
to consider the best method of tossing three dice so that the outcome of each die
would be five. The majority of reSponses to this question indicated children’s
belief that it would be better to toss each of the dice separately. If they were all
tossed together the dice would ‘rub against each other, and the numbers would
move around’ so the probability of getting three fives would be less likely.
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Children were shown an urn with six numbered table-tennis balls and a six sided
die and asked whether if they chose a table-tennis ball and tossed a die the out-
come would be the same or different. The majority of responses to this question
also indicated that because of the different shape and composition of the RGs in-
volved the numbers would be different in each case. Very few children sug-
gested that all numbers have the same possible outcome, although that was not
always the case as the following example shows.

TC (F9:8)

I Would the game be the same or would it be different if I used the
table-tennis balls in the urn instead of the dice?

TC [hesitates] It’s still the same numbers as the dice.
I So, what do you think. would the game be the same or different?
TC The same it’s still got the same numbers.

Urns or bags of counters were seen as being particularly unreliable, because of
the probability that the objects in them would roll about and cause certain elem-
ents to be more likely to be chosen. In the case of the urn it was pointed out that
the table-tennis balls would roll ‘into the corners’ thereby making it unlikely that
all elements had the same probability of being chosen.

The physical arrangement of RGs with a different embodiment were frequently seen
as being liable to different outcomes because of this.

DD (F9:11)

The dice is hard, kind of - and the raffle tickets are paper, so you
won’t get the same numbers.

WD (F 7:9)
I When I toss this die [twelve sided] is there a number or numbers
that is easiest to get or are they all the same?
WD It has more sides than the other one, a lot of angles, I think six
sides are better, I don’t like this one.
Perhaps it is not just the question that we ask but the objects about which the ques-
tion refer that influences children’s responses.Yost et al.(1962) discussed the need to
eliminate preferred and least:-liked colour of RGs before the formal interview. The
following indicates how colour-preference might influence a response.
M (M 8:2)
I Holding a six faced die. Have you seen one of these before?
JM No
I  Notatall?
JM  Well I haven’t seen one like that, that’s red.
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In the teaching of probability there are so many implications that influence children’s
responses. Our teaching will be more effective of we know what the misconceptions
are so that they may be addressed directly. Madsen (1995, p. 90).

CONCLUSION AND FURTHER QUESTIONS

This paper emphasises the need for a link between research and practice. The ped-
agogy of probability teaching is not well defined. The psychology that explains issues
of how children learn probability is increasingly well studied, so research findings
like these described here are necessary if we are to create links between the two
areas. Teachers and curriculum planners need to be provided with information about
the influence that physical properties and physical arrangements of RGs have on
children’s probability thinking, as well as childrens’ preferences about RGs used dur-
ing lessons.

It needs to be ensured that documents in the future reflect children’s real thinking
about probability. While not specifically reported elsewhere it has been both resear-
chers’ finding that primary school teachers attending in-service courses are especially
concerned about their own lack of knowledge of stochastics; and lack confidence in
planning the continuation of a stochastics topic without support from mathematics
associations and in-service courses. They are eager to discover what children think
about stochastics and ways in which to present children with appropriate, wider-rang-
ing and more challenging activities than they frequently are at present.
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REPRESENTATIONS OF POINTS

Pessia Tsamir
Tel Aviv University ~ Kibbutzim Teachers College

Abstract

This article offers an analysis of the data concerning a comparison task, where
nvo points, the intersection point of two lines and the intersection point of six lines
were lo be compared. This study of kindergarten to 9th graders, suggests that (a)
students tend to grasp the two points as unequal. Moreover, the intersection point of
six lines was frequently viewed as bigger and heavier than the intersection point of
nwo lines; (b) this tendency declines with age, yet about 25% of the 9th graders still
held this belief. The analvsis considers the findings from a large perspective using the
intuitive rule: “More of A- More of B”': The larger the number of lines - The larger
and heavier the point.

Introduction

‘Point’ is a basic notion in geometry. Rather than asking what a point is, it seems
much more appropriate to ask what it is not, $ince ‘point’ has no definition and no
characteristics by which it can be described. A point has neither width nor length - no
dimensions at all. 1t just marks a place on a plane. This alone is quite paradoxical:
How can something possibly mark a place when it has no dimensions?

To a naive student, it seems that the point, in spite of its being dimensionless, is
the origin of segments with finite length, lines with infinite length, planes of width and
length, in fact, all the possible geometrical figures. In other words, a certain
accumulation of 'zero length’ points seems to produce a segment of 'n’ length.
However, the geometrical continuum involves the emergence of positive length
segments from zero length points. This, too, is an non-intuitive facet of the
mathematical concept of “point’.

In spite of the above mentioned even very young children are familiar with points,
because the point is not just a geometrical notions; it has various meanings in other
mathematical and naturalistic frameworks too. Children first encounter points early on
in their lives. Even in kindergarten, children draw dots and points, talk about big
points and small ones, round ones and colored ones - very perceptive and visual ones..
Moreover, one uses a 'point’ to separate whole numbers from decimals (e.g., 1.3 is one
point three); a pen has a'point'; there is a'point’ to my listing all these examples; and

- this drawing 'e', also concretely designates a 'point’.

Using Tall and Vinner's terminology (1981), in spite of the fact that 'point' has no
concept definition, students have, from very early on, a fairly clear concept image of
points. This concept image is rooted in their real life experience and in their
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geonictrical experience.  Yet, points, in an everyday context, are frequently physical in
their nature, therefore they actually contradict the pure, dimensionless, geometrical
notion of ‘point’. This geometrical notion, much like the whole of geometry, is
antagonistic to reality-- "[geometry] deals with points which are not points but vague
unspecified items; lines which are not lines but classes of items; and planes that are
not planes but classes of classes" (Goetz, 1956/ 1962 p. 187).

Moreover, even the schematic drawing of points, in gecometry lessons might
trigger an erroneous perception of the notion of point in the students’ mind.
According to Fischbein (1993), when referring to geometrical figures there are three

categories of mental entities: the definition, the image and the figural concept.
l ischbein differentiates between the drawing, which is a concrete entity, and the
correspondmg abstract idea, strictly determined by its definition. llowever students
tend to confuse the drawing with the geometrical idea.

This contradiction between the mathematical meaning of the notion of ¢ point’ and -
the irrelevant, interfering interpretations which are attached to it, may lead to strange
and problematic ideas that occasionally contradict the mathematical ones. Teachers
should be aware of these ideas when preparing instructional materials.

It is surprising to find how little research has done to investigate students'
conceptions of the notion of ‘point’. Hence, one of the main aims of this study was fo
look further into_students' concept of point’. Another aim of this study was (o look
for general rules, which apply beyond the specific issue of ‘boints' and intuitively

guide students when comparing any two given entities.

Method
Three hundred and one Israeli state-school students aged 5 - 15 participated in this
study (57, 45, 64, 70, 65 students from grades K, 2, 4, 6, and 9, respectively). It is
noteworthy that the 9th graders were not math majors. One of the researchers
conducted 57 individual interviews in a kmdergarten All other participants (2nd - 9th
grade) answered the same questions, but in wnlmg

All students were asked to compare the mlersec,tlon point of six lines (A) with the
intersection point of two lines (B). This part was based on Fischbein's study (1993) of
chlldren S ﬁgural perception of geometrical figures. The questionnaire is given below:

NV

A B

‘The Questions:

- Point A is the intersection of 6 lines Point B is the intersection of 2 lines
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Are points A and B equal? Yes/No

Is one of the points bigger than the other? Yes/No

If the answer to question 1 is yés - which point is bigger?
Is one of the points heavier? Yes/No

If the answer to question 3 is yes - which point is heavier?
Do the points have the same shape? Yes/No

R

'The shape of point A ts: ........... The shape of point Bis: ...........

Results
The results will be presented in the sequence of the questionnaire.

Are Points A and B Equal?
Most of the young participants (75-80% of kindergartners and 2nd graders)
claimed that points A and B are not equal, whereas most 4th and 6th graders (about
65%) and most 9th graders (about 75%) viewed points A and B as equal (Table 1).

Table 1: Students’ tendency (%) to view points A and B as being equal

Class: K (n=56) 2nd (n=43) 4th (n=62) 6th (n=68) 9th (n=64)
AequalB 193 24.5 64.1 67.7 75.8
Anotequat B 80.7 75.5 359 323 242

An important question that naturally arises is, "What factors facilitate students'
perception of the equality or inequality of points A and B?" Three aspects of
participants’ grasp of "equality” were considered: (1) size, (2) weight, and (3) shape.

Students' Perception of the Sizes of Points A and B

A, Points A and B have the Same Size ,

Most 6th and 9th graders (65% - 75%), about half of the 4th graders and some of
the young participants (about 10% of kindergartners and of 2nd graders) claimed that
the points have the same size. Some explained: "Because both are points”.
Regretlully, most participants did not explain their claims at all (Table 2).

B. Points A and B are of Different Size

Most kindergartners and 2nd graders (about 75-80%), about half of the 4th
graders, but also about 30% of the 6th graders and 20% of the 9th graders claimed
that point A is larger. The most common explanation was "Because there are more
lines passing through it", or "it looks bigger". But again, usually no explanation was
given.

Surprisingly, about 13% of the kindergarten participants and of the 2nd graders,
and a few other students claimed that point B is larger than point A. The reason
given was that point B had more place to expand as it was not limited by so many
lnes.
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The differences between the answers of students from various class levels, were
significant (X*=88.63 df =8 p <.01).

Table 2: Which point is larger?

Class: K (n=54) 2nd (n=33) 4th (n=50) 6th (n=69) 9th (n=64)
A=B 1.3 6.1 480 652 734
A>B 75.7 81.3 479 30.4 219
A<B 13.0 12.6 4.1 44 47

Students' Perceptions of the Weight of Points A and B
About 10% of the 9th and 6th graders found this question too strange to be
answered, arguing that weight is entirely irrelevant to points. A few added that they
never thought about this aspect in relevance to points, and a number of others said that
if there is such a thing as ‘the weight of points’ then it should be equal for all points.

Al Points A and B have the Same Weight

About 65% of the 9th and 6th graders, and about 40% of the 4th graders claimed
that both points have the same weight, "because both are points" or "because they
are equal” (Table 3). :

B. Points A and B Differ in Weight

Almost all younger participants (kindergartners and 2nd graders), about 60% of
the 4th graders, and about 35% of the 6th and 9th graders claimed that the points differ
in weights and almost all of them specified that point A is heavier, usually "because
it consists of more lines”. There were significant differences between the answers of
students from various class levels (X*=82.21 df=8p <.01).

Table 3: Which point is heavier?

Class: K (n=53) 2nd (n=29) 4th (n=47) 6th (n=67) 9th (n=61)
A=B 3.8 - 383 64.2 61.7
A>B 943 96.2 61.7 358 36.7

A<B 1.0 38 - - 1.7

Students' Visualization of the Shape of Points A and B
The graphic representation of points A and B elicited the following three main
explanations of the shape of these points:

A. "Pictorial Description

Points A and B were visualized as being similar to everyday objects. Point A, for
instance, was visualized as a flower, a star, the sun, or a hedgehog. Point B was
visualized as being similar to different objects, such as, the letter X, a butterfly,
scissors, etc. About 35-50% of the K, 4th, 6th and 9th graders, and about 80% of the
2nd graders gave this type of description (Table 4).
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B. Dimensional Description

Points A and B were described in terms of size. When llns manner of description
was used (about 50% of the kindergarten, and about 10% of the 2nd, 4th and 6th
graders), it was used to describe both points. Students claimed that point A is big,
thick or wide, while point B is tiny, small, thin or slender. Although the same style of
description was used for both points, the specific words used to describe each point
indicated that these students believed the points were not equal.

C. " Geometrical Description
Both points were described as circular figures in general, or as small circles. This

was_quite common in 4th to 9th class levels (about 30-50%).

Table 4: Students’ Visualization of Points A and B
K (n=50)  2nd (n=32) 4th(n=42) G6th(n=68) 9th(n=52)
POINTS: A B A B A B A B A B
Pictorial description 32.0 300 81.8 818 524 54.8 31.6 351 489 489
sun. hedgehog
vs. butterfly. scissors

Dimensional description 46.0 46.0 12.1 12,1 95 95 88 88 2.1 2.1
big. thick. wide '
vs. tiny. thin, small

Geometrical description 120 11.0 - - 285 26.2 49.2 45.7 32.0 320

a (small) circle. circular
Looks like a point 100 140 61 61 95 95 105 105 149 149
No definite shape - - - - - - - - 2.1 2.1

There were significant differences between students’ descriptions of point A in
different class levels (X2= 51.12 df =20 p < .01), as well as differences in students'
descriptions of point B (X%=42.32 df = 20 p < .01).

A connection was found between the students' manners of description and their
tendency to relate an identical shape to both points. Students who described the two
points‘in a pictorial way and those who described the points in terms of size, usually
differentiated between the shapes of point A and point B. On the other hand,
participants who described the points as a geometrical figures (e.g., round or circular)
and those who merely said that a point looks like a point, tended to attribute the same
shape to both points.

Two additional ways of describing points A and B were: (i) “They just look like
points”, and (ii) "They have no definite shape”. These indefinite responses did not,
in fact, reflect how the students visualized points. Still, about 10-15% of the
kindergarten, 4th, 6th and 9th graders used this description. The response that "points
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have no definite shape" was actually presented by one 9th grader who consistently
responded to all questions by saying that "a point is a basic notion representing a
geomelric figure with no dimensions. Hence, it cannot be defined, drawn or referred
to by its shape”.

Conclusions
The (indings of this study agree with the findings of previous research showing
that students relate to mathematical notions attributes which are not necessarily in line
with the mathematical theory (e.g., Tsamir, 1996). These findings strongly indicate
that students' responses are often influenced by the way in which the problem is
presented (e.g., Tirosh & 1'samir, 1996). Moreover, geometrical drawings play a
special role in students' conception of geometrical notions (e.g., Fischbein, 1993).

Geometrical drawings usually assist in the solving of geometrical problems. Yet,
they are also a source of confusion. Students do not distinguish between necessary
and accidental features. When presented with a drawing, they connect pure
geometrical notions with accidental features. Such features are existent only in the
specific figures drawn or visualized for the case in question. The confusion arises
when these irrelevant features are mistakenly considered to be necessary features of
the geometrical figure in question. However, the latter are formally derived from
notions and postulates of the theory (see, Black, 1959). Our findings show that
students of various ages attribute to geometrical points various accidental features,
such as shape, size and even weight, features which are part of the visual image of the
geomelrical drawings. '

Under such circumstances the notion of 'point’ should be formally presented and
constantly repeated. First of all, due to the impact which students' misconceptions
about 'points’ have on their performance within various mathematical domains. For
instance, when asked to compare the number of points in two different line segments
(in set theory), some students claimed that the answer depends on the size of the points
in each segment (Tsamir, 1994). Or when asked to compare two angles, 4th graders
claimed that the angle with the bigger point in its vertex is bigger (1'samir, 1995).
Secondly, the notion of 'point’ is very important in itself, but it is even more important
since it represents the whole idea of 'basic notion’. It can and should be used as an
illustration for the structure of the hierarchy of notions within a particular
mathematical theory, which can only be done within the framework of a mathematics
lesson.

In the upper grades of high school and in college courses for pre-service teachers,
it would also be very appropriate to discuss "the usefulness of the impossible" (see,
Goetz, 1956/1962). Schaaf explained Goetz's expression as follows: What professor
Goetz here calls the "impossible” in mathematics refers, of course, to the abstract
nature of mathematical concepts and relations. They are impossible because they are
ideal or "perfect”. But by virtue of their perfection, they are amenable to the laws of
logic and internal consistency, and thus we can think about them in rigorous terms
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(p. 1806). This "perfect-pure” nature should be differentiated from the concrete
physical application of the mathematical terms.

What has s10f been explained so far, is the pattern noticed in most students'
answers when asked to compare the point of intersection of six lines (A) with the
intersection point of two lines (B): Why did most students, who claimed that points A
and B3 are of different size, also consider point A to be larger than B, and similariy,
why did those who claimed that points A and B differ in weight also grasped point A
as being heavier? :

It seems that these patterns are not content-specific, and do not relate to 'points’ or
. any other specific concept in particular. Comprehensive research is currently being
conducted, which considers students' similar reactions to a wide variety of
scientifically unrelated situations in both mathematics and science education, by Stavy .
and Tirosh (e.g., 1994). They suggest that many erroneous responses (o comparison
tasks, which the literature calls alternative conceptions, could be interpreted as
evolving from a small number of basic intuitive rules. One of the rules they identified
is: The more of A, the more of B.

The simplest way to demonstrate the widespread cue of these intuitive rules is
through their manifestation in common phrases in daily speech, such as "the more you
studv, the more you know" etc. Comparing quantities and determining whether they
are equal or not is something people do frequently. Tirosh and Stavy have specified
two procedures for the comparison of quantities: the direct method, and the indirect
one. In some cases, judgment is based on direct, visual information. That is, one can
directly perceive that, in respect to the quantity in question, one object is equal or
bigger than the other. Take for instance, two identical sticks, one of which, however,
is longer than the other. 1t is obvious to children, from a relatively early age on, which
one is longer. '

However, often, such direct perceptual cues are not available, thus requiring an
indirect approach. In these cases the target comparison is often based on another
quantity. That is, there are many cases in everyday life in which a perceptual quantity
(A) can serve as a criterion for comparing another type of quantity (B). In these cases
“the more of A (the perceptual quantity) implies the more of B" (the quantity in
question). Unfortunately, frequently quantity A is irrelevant to the required

. comparison, or cannot, by itself, serve as a criterion for.comparison. For example,

when young children compare two cups containing equal amounts of water but where
one cup is narrower and taller than the other, they often claim that "the taller - contains
the more".

This intuitive rule affects students' responses to comparison tasks, regardless of the
specific nature of the content domain. Thus misconceptions apparently related to
different domains are actually only specific instances of the use of this general rule.

In the case of points A and B, where A was the point of intersection of more lines,
it was also usually grasped as being larger and heavier, reflecting the rule "the more
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lines-- the larger the point” or "the more lines-- the heavier the point". Interestingly,
even students' explanations of the view that point B, the point of intersection of only
two lines, was larger than point A, the intersection point of six lines, could be
interpreted by means of this very same intuitive law. Point B was considered larger,
because students argued that "the point which still has more place to expand, is
bigger". An unexpected instance of "the more A- the more B”.

Last but not least, the findings of this work also strongly indicate the need for
further research to bring to light students' conceptions of 'points'. It would be
nleresting to widen our data base by means of a larger sample of students, including
mathematics majors. This work should also refer to additional aspects of basic notions
in general and of points in particular.
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UNDERSTANDING OF DIFFERENT USES OF VARIABLE:
A STUDY WITH STARTING COLLEGE STUDENTS

Sonia Ursini Maria Trigueros
DEPARTAMENTO DE MATEMATICA EDUCATIVA DEPARTAMENTO DE MATEMATICAS

CINVESTAV-IPN, MEXICO ITAM, MEXICO

University mathematics courses require a solid and flexible understanding of the concept of variable.
In this paper we present a detailed analysis of the responses given to a series of open-ended items
involving different uses of variable (unknown, general number, variables in functional relationship)
by 164 starting college students. The results show the persistence of many misconceptions and
problem solution strategies characteristic of lower school levels. There is evidence showing that the
majority of the students are still restricted to an action concept of variable. This hinders most
students from attaining a level of abstraction which will enable them to consider variables as objects
whose role can be analysed.

The mathematics taught at university level requires a solid and flexible
understanding of the concept of variable. Even though much attention has been
brought to secondary students’ conceptions of variable [2,3,7,9], a considerable less
effort has been dedicated to the study of the ways in which newly undergraduates
work with this concepts. Our study aims to contribute in filling this gap.

In previous articles [5,6,8] we have presented the first results of a project that
intends to investigate college students” conceptions of variable. We presented a
decomposition of the concept of variable that was used to design a questionnaire of
65 open-ended items. A quantitative and a qualitative analysis of 164 starting college
students” answers suggested that they have great difficulties to deal with different
uses of variable, namely, unknown, general number and variables in a functional -
relationship. Moreover, this analysis allowed us to refine our decomposition of
variable. In this article we present a detailed analysis of the responses they gave to
some of the items involving these different uses of variable. This analysis aims to
highlight the ways in which they work with them and to explore up to which level
they have developed a capability to cope with them adequately in simple school
problem. !

THEORETICAL FRAMEWORK

The understanding of the concept of variable implies, from our point of view,
the possibility to overcome simple calculations and operations with literal symbols, to
develop a comprehension of why these resources work; to foresee the consequences
of using them; to distinguish between the different uses of variable and shift from one
to -another in a flexible way, integrating them as components of the same
mathematical object. Coping with each one of the different uses of variable implies
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the capability to recognise its role in a given situation; to operate on and with it when
required by the task; and to use it in order to symbolise a problem situation. It could
be ‘expected that after several elementary algebra courses undergraduate students will
be able to cope with the different aspects of variable, and that the understanding of
each one of them will be equally developed.

A starting point for understanding the way in which students conceive and
work with variables can be a careful analysis of what is meant by understanding this
concept, through isolating its components and explicitly describing the relations
between them [/]. In a first approach this analysis or decomposition of the concept of
variable was based on our own understanding of this concept, on our experience as
teachers and on .what we considered the necessary mental constructions for
developing it. This first decomposition [8]has been refined after analysing students’
responses to the questionnaire. In the following paragraphs we present a new
decomposition of the concépt of variable highlighting the aspects that, from our point
of view, are basic for understanding its different uses.

We consider that an understanding of the variable as unknown implies: to

recognise and identify in a problem situation the presence of something unknown that
can be determined by considering the restrictions of the problem; to recognise the
symbol that appears in an equation as an object that represents specific values that can
be determined by considering the given restrictions; to be able to substitute to the
variable the value or values that make the equation a true statement; to determine the
unknown quantity that appears in equations or problems by performing the required
algebraic and/or arithmetic operations; and to identify the unknown quantity in a
specific situation and to symbolise it posing an equation.
’ It could be argued that an unknown is not a manifestation of the variable
because it represents a fixed value; nevertheless, we consider that the first perception
of the literal symbol when working in algebra is, or should be, that of a symbol
representing any value, and that only in a second moment its role in the expression in
which it appears can be defined. So, when presented with an equation we recognise
that the variable represents a specific value only after having actually or mentally
performed the necessary manipulations that allow us to recognise it as an equation
and not, for example, as a tautology.

The understanding of the variable as general number implies: to recognise
patterns in numeric sequences or m families of problems; to recognise a symbol as
representing a general, indeterminate object; to develop the idea of general
pattern/method by distinguishing the invariant aspects from the variable ones in a
problem situation-and to symbolise them; to simplify or to develop expressions.

The understanding of variables in a functional relation (related variables)
implies: to recognise the correspondence between quantities independently of the
representation used (tables, graphs, verbal problems or analytic expressions); to
determine the values of one variable (dependent or independent) given the value of
the other one (independent or dependent); to recognise the joint variation of the
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variables involved in a relation independently of the representation used (tables,
graphs, analytic expressions); to determine the range of variation of one variables
given the domain of the other one; to symbolise a relation based on the analysis of the
data of a problem.

For each one of the three aspects of variable, this decomposition stresses
different levels of abstraction at which it can be handled. College students should be
able to cope with all of them, moreover, in order to handle the variable as a
mathematical object they should be able to integrate its different uses in one concept
and shift between them depending on the requirement of the task.

METHODOLOGY

Our first decomposition of variable was used to classify and interpret the
answers given by 164 starting college students [§]. As already reported the score for
each one of the uses of variable was very low. Therefor, in order to obtain a better
comprehension of students” understanding of different uses of variable we decided to
focus our analysis on the incorrect answers. For this analysis we selected a series of
items that involved each one of the different uses of variable. Moreover, some
students were briefly interviewed in order to obtain a deeper comprehension of their
understanding of the concept of variable. This information was further complemented
by observing the way in which algebra is taught in high school.

QUALITATIVE ANALYSIS OF THE RESPONSES

Table 1 presents a selection of the items involving variable as unknown (items
14, 16, 50 and 52) and variable as general number (items 4, 5, 8, 22). For each item
the percentage of students giving correct, incorrect or no answer are shown.
Additionally, examples of the most frequent incorrect answers are presented.

The analysis of students’" responses suggests a difficulty in discriminating
between variable as unknown and variable as general number (items 5, 13, 14) that
implies a feeble conceptualisation of these uses of variable. Instead of manipulating
the expressions in order to obtain a.form that might help them recognise if the
variable involved represents an unknown or a general number, students seem to look
for signs allowing them to give a quick answer. Their answers seem to be an
automatic response to external stimuli, suggesting an understanding of variable at an
action level. Evidence for this is provided by the answers given to item 14. The
incorrect answers to this item show two big tendencies: some students answered by
writing the number 2; a second group considered that the letter could assume an
infinity of values. The first answer seems to be induced by the presence of the
quadratic exponent on the left side of the equation. This sign seems to act as a
stimulus inducing students to consider that they are facing a second degree equation
and, using a memorised fact, they automatically answer that the letter can take two
values. The second group, less numerous but considerable, seems to deepen a little
more their analysis and get aware of the quadratic term on the right side of the
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expression. This seems to lead them to consider that they are facing a tautology and,
therefor, the letter is viewed as representing an infinity of values.

Item No answer Correct Incorrect Examples of incorrect answers
How many values can the letter assume 4% 52% 46% 1
in the following expressions?
i 5. x+2=2+x

13. (x+ 1)7=x"+2x+1 23% 28% 49% 1;2
14. 4+x"=x(x+1) 31% 23% 46% 2; oo; several; R;N
16. Write the values the letter can 17% 10% 73% x=3
assume.
(x+3)"=36
50. :”\:‘r)ilﬁczrxnt?onnula for solving th?s 3 38% 7% 55% a4 b=27 L= \/E .
The total area of the - Iy =27:.0- 31 - 3%
figure is 27. Calculate 5 [—— 27—(\/5-3+\/E-3);x-3;
the side of the shadowed square. 27-32
52. To rent a car costs $25 daily plus 13% 46% 41% 125

$.12 per kilometre. How many
kilometres can Diego drive if he *
only has $40?

4. Write a formula to express an 2% 29% 682% x
unknown number divided by 5 and —=y+7
the result plus 7.

22. To calculate the perimeter of a figure 5% 54% 41% 2(b+h); (5+4)2;8+5x4;
we add up the length of each side. 2(5)+2(4y,x+5+8+9=P;
Write a formula to x=5L+L+x+x;8+5x2
express the perimeter 4
of the figure. i

Table 1

A superficial conceptualisation of variable as unknown and as general number
is confirmed by the answers given to item 13. Once more their answers seem to be
influenced by stimuli perceived as external and not by an analysis of the expression.
We suggest that the presence of the equal sign led 49% of the students to conceive the
expression as an equation and the variable involved as an unknown. The presence of
the quadratic exponent led half of them to consider that the letter may assume two
different values, while the other half considered that it can take only one single value.
That the presence of the equal sign induced a perception of the variable involved as
an unknown is suggested as well by the answers given to item 5. However, if
compared to items 13 and 14 it can be observed that the number of correct answers
considerably increased for item 5. We would suggest that the reason for this is that
item 5 can be solved by simple inspection, without any manipulations, while to -
answer items 13 and 14 it is necessary to manipulate the expression, actually or
mentally, in order to recognise the role of the variable.

A tendency to avoid manipulation and to determine the value of the variable by
inspection is suggested by the answers given to item 16. Although they correctly
perceive the variable as unknown, they avoid manipulation and by simple inspection
they consider that the variable can assume only one positive value. This behaviour
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suggests the persistence of arithmetic methods in the solution of equations and an
elemental action conception of the variable as unknown. The way in which the
problem is posed seems to influence students’ answers (compare items 14 and 16 that
ask respectively “how many values” and “the values™ the letter can have).

Difficulty in conceptualising variables as unknowns is confirmed by students
responses to verbal problems. Face to'a simple problem (item 52) half of them answer
by giving a correct number without posing an equation. Although they conceptualise
the unknown of the problem, they determine its value by arithmetic methods. When
the complexity of the problem does not allow them to use an arithmetica approach
(item 50), they give an arbitrary solution showing a lack of ability to symbolise the
problem. It can also be observed that when they use a symbol this is not denoting the
unknown but another quantity involved in the problem. All these results indicate that
most of the students handle variable as an unknown in an elementary level in which
they barely recognise it as an unknown number, and their p0551b1htles to process all
the information are very limited.

Responses to item 4 show that although students have some capability of
symbolisation and manipulation of the general number, they seem to feel a certain
discomfort to consider x/5 as an object to which another operation can be applied.
Students seem to need to write explicitly a new general object to perform the next
operation and they do not consider necessary to separate the expressions x/5=y and
y-7. The combination of both expressions in a single one leads them to an incorrect
result. The use of the equal sign as a connection between the solution steps can be
considered as a reflection of their abbreviated thinking process and as an evidence of
their insecurity to assign a particular role to the variable in the problem. The
capability to construct an expression which involves a general number slightly
increases when the symbol has a clear reference and the expression obtained
represents a result. Evidence is given by the response to item 22, in which the literal
indicates the indeterminate length of a segment, and the result is a perimeter. For
items like this one a strong tendency to use memorised formulae was also observed,
suggesting once more an action conception of variable. .

The use of general number implies a process of generalisation. Less than a half
of the students were able to interpret patterns and deduce a general rule. Most of them
were able to recognise a pattern at an action level, finding the relation for specific
numbers, but they had serious difficulties in generalising the process. Students show a
very low comprehension of variable as a general number. They can recognise a
symbol as the representation of something indeterminate in simple cases, but show
great difficulties when the level of abstraction is a bit higher.

When students deal with related variables (Table 2), we find that no matter the
representation used to express the relationship, students can adequately handle the
notion of correspondence between specific numbers, but they have difficulties with
the idea of related variation. For example, the answers given to questions 44 and 58
can be classified into two groups. Students who list only the whole numbers in the
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interval and those who answer in terms of intervals. The first group demonstrates a
weak notion of the continuos property of the real numbers and a discrete conception
of the relation. Students in the second group obtain the interval by evaluating the
function at the end points of the given interval, without taking into account the
specific characteristics of the function (item 58). This shows an inappropriate
generalisation of the monotonical property independently of the relationship.

Item No answer Correct Incorrect | Examples of incorrect answers
39, Write a general rule  :Co Price 12% 65% 23% n price; 6.25 n=x; 5n=6.25
if n stands for the 5 | 86.25
number of copies. 10 |$12.50
15
43, Write a general rule ity 29% 32% 38% 10s=30v; x+1=y+1;

to link the numbers 0] Om/s . Is=3m/sec; x +m=y,
on the left side of the 10§30 m/s

. tabletothosconthe 15 d=
. right side. 201 60 m/s t
44, Observe the following expression 3% 18% 79% 1,2,3,4,5,6,7;
y =3+ x. If we wantthe values of y {1,2,3,4,5,6,7}

to be greater than 3 but smaller than
10, which values can x assume?
For each kilogram the tray of the balance 12% 28% 60% lkg=4cm
moves 4 centimetres.
48. Express the relation between the
- weight of a merchandise and the
movement of the tray.

49, If the tray moves 10.5 cm., how 5% 68% 26% lkg=4cm
many kg are bought? 2.62 ?=10.5cm
From the data of the table 10% 11% 79% increases ; decreases
53. What happens
to the value
of y when
the value of x
increases?
58.1f x assumes values between -2 37% 2% 61% 4 and 676
and 26, which will be the range )
of values for y? .
59.40 - 15x - 3y = 17y - 5x . Which is 34% 21% 45% y=10,y=-60;y=6,y=32;
the value of y  for x = 167 : y=13;y=100
16% 41% 43% 0and 5 and 0 and -5;

0 and 5and 0 and -2;
[(0,10)5 (0, 5) L (0, -e0);
-20t0 0w 0to5

62. Between which values of x he
values of y increases?

63. Between which values of x, the 16% 27% 57% 5and 0 and -5 and -10; (5, «);
values of y decreases? (4, o0); (c0 and -5) and (5, «);
(10. 20)
Table 2
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The way students deal with tables and graphs suggests the use of intuitive
methods to interpret variation. Student’s difficulties with the notions of order and
density of the real numbers appear again when they try to find intervals in which a
function increases or decreases. In the case of item 62, some students take a particular
value of the independent variable as a reference and analyse the behaviour of the
dependent variable to its left and right, concluding that the values of the dependent
variable increase when the independent variable is between 0 and -5, and between 0
and 5. Another example of the use of intuitive methods is found in the way students
complete tables or solve verbal problems (item 49) using proportions as a tool to ﬁnd
particular values.

The symbolisation of a functional relationship also presents serious difficulties
to students. Only when the symbols for the variables are given explicitly, as in item
39, students are able to symbolise the relation. This is an indication that students
require external support to recognise and express in symbols the relation between two
variables. When faced with word problems, as in question 48, they try to synthesise
part of the information of the problem by using symbols. A large number of students
write: 1 kg = 4cm, showing that they interpret the problem in terms of the relation
between quantities. Here the equal sign is once more used as support in the analysis of
the problem and as a reflection of the mental process of the students. They are not
able to generalise the rule and express it in an analytical form. When several
operations are needed in the solution of a problem: substitution, transposition, and
grouping alike terms, students demonstrate a weakness in their capability to
manipulate and to handle related variables. In item 59 we found several inadequate
manipulations and, again, a need to perform actions one by one following a specific
order and writing down all the steps, without analysing if they are correct.

In general, the answers to those problems that involve relations show a great
inconsistency and inadequate generalisations, even for very simple problems. Most
students do not seem to conceive the relation as a transformation process or as a
dynamical process of variation. It seems clear that their conception is limited to a
static idea of one to one correspondence.

The class observation at high school level showed that teachers’ attitudes seem
to reinforce student’s conceptions about the role of memorisation and automatic skills
in algebra: When teachers approach algebraic problems, they handle the different uses
of the variable, and go from one to the other without any explanation that would
enable the students to understand the role the variable plays in a specific moment in
the process of solution. The class time assigned to mechanisation of procedures is
always larger than that used to application or conceptualisation exercises. When
students make a mistake teachers put more emphasis on the correction of the
algorithm steps than on the conceptual aspects involved [4].
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CONCLUSIONS

The results of this study confirm that learning the concept of variable is a
difficult and slow process. Students’ conceptualisation of this important concept
remains at an action level after several years of study. The attention of the students is
centred on superficial characteristics of the expressions, and they tend to use
arithmetic methods for solving problems. The exposition to previous courses does not
develop in a meaningful way the possibility to generalise procedures and patterns.
Even though the majority of students are able to recognise the role a variable plays in
very simple expressions and problems, a slight increase in the complexity of the
problems leads to inadequate generalisations and to the search for memorised or trial
and error solutions. Students’ strategies are dominated by procedures which have not
been interiorised, this is shown in their need to make explicit the steps they follow in
the solution process and their incapability to analyse them and detect possible
mistakes. Many of their actions seem to be caused by stimuli that they perceive as
external and which induce them to answer in a certain specific way, avoinding
manipulation, suggesting that they are anchored to an action level.

The results of class observation suggest that the type of problems found in this
study are strongly related to the way in which algebra is taught in previous courses. It
seems that there is a necessity to re-think the way in which this concept is approached
at school.

Finally we want to stress that our decomposition of-the concept of variable
allowed a detailed analysis of students’ responses. It would be desirable to prove it in
more complex situations and in the design of strategies and activities for a more
meaningful teaching of the concept of variable.
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GENDER DIFFERENCES IN COGNITIVE AND AFFECTIVE
VARIABLES DURING TWO TYPES OF MATHEMATICS TASKS
' Harriet Vermeer, Monique Boekaerts, & Gerard Seegers
Centre for the Study of Education and Instruction
Leiden University, The Netherlands

Abstract

In this study gender differences in cognitive (performance, solution strategies)
and affective variables (confidence, persistence following failure) were studied.
Subjects were sixth-grade students (ages 11-12) who were observed when
working on two types of mathematics tasks: algorithms versus applied problems.
Results demonstrated gender differences in cognitive and affective variables with
respect to applied problems only. Girls perceived lower confidence compared
to boys, and also compared to their own confidence while solving algorithms.
Our data suggest that performance alone does not account for differences in
confidence. Analyses revealed that boys were inclined to be overconfident,
whereas girls were inclined to be underconfident.

Introduction

Theoretical framework
The importance of including motivational variables when studying individual
differences in mathematics learning has been stressed by many authors (e.g.
Pintrich & De Groot, 1990). In our study, elements from research within
cognitive psychology on the one hand (e.g. Schoenfeld, 1985) and elements
from research that is directed at a task-specific approach of motivation and
learning on the other hand (e.g. Boekaerts, 1991) are integrated. '

The reasons for setting up this research were twofold. First of all, this
research was aimed at gaining better insights to different aspects of motivational
variables and achievement in mathematics, especially at the task-specific level.
The study that is described here draws on research that has been directed at
students’ motivation in concrete learning situations (Seegers and Boekaerts,
1993). Secondly, the research was set up to further explore gender differences
in mathematics. In many studies it has been reported that already in primary
school, girls perform worse than boys in mathematics, especially when it comes
to applied problem solving. In two studies that were executed five years apart
by the Institute for Educational Measurement in The Netherlands, clear differ-
ences in performance between boys and girls in the final year of primary school
were reported (Wijnstra, 1988; Bokhove et al, 1996). Over the years a wide
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range of explanations about the causes of gender differences in mathematics
achievement have been offered. Different models, which are complex and
multivariate, have been presented (e.g. Ethington, 1992). Our starting point is
that gender differences in mathematics perfbrmance are the outcome of complex
interaction effects, in which both cognitive and motivational variables play a

role.

Research perspective

We investigated gender differences in both cognitive. (performance, solution
strategies) and affective variables (Vermeer, 1997). With respect to the latter,
emphasis was put on students’ expectancies concerning successful goal
attainment while they were working on a mathematics task (perceived
confidence), and their persistence following failure. Drawing on studies in which

gender differences have been reported involving content-specific areas of

performance (e.g. Marshall and Smith, 1987), a distinction was made between
two types of mathematics problems: algorithms and applied problems.
Algorithms are characterized by the fact that a precise, systematic and detailed
plan should be executed. An applied problem may also include a sequence of
steps, but this sequence is less complete and less systematic than within an
algorith. Especially with context problems, which are considered to be an
important part of the mathematics curriculum within realistic mathematics
education (Treffers and De Moor, 1990), an extra difficulty is involved because
students should evaluate their solution within the context of the problem.

We hypothesized that, in general, students would show more éonﬁdence
while solving algorithms, because this appeals more to the execution of a precise
and systematic plan than solving applied problems. We also expected students
to give up earlier after failure when it came to solving applied problems
compared to algorithms. With respect to gender related differences, we did not
expect to find differences in boys’ and girls’ confidence while solving
algorithms, nor in their reactions to failure. However, we expected girls to have
lower confidence than boys While'solving applied problems, and hence to give
up more easily after failure experiences.

Our research questions were:

Do gender differences exist with respect to the cognitive and affective

variables used in our research?
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- How are (in)correctness of the solution, gender, type of task, and students’
perceived confidence related?

- What are the influences of perceived confidence, type of task, and gender
on persistence following failure?

Method

Subjects

Subjects were 158 sixth-grade students (ages 11-12), 79 boys and 79 girls. These
students came from 12 different schools in The Netherlands, at which all
teachers work with the same realistic mathematics method. At first, all students
made a shortened version of a test for non-verbal intelligence. Those students
who scored within the highest or within the lowest decile were excluded from
our research. From the pool of remaining students 158 were randomly selected.

Measures
Two mathematics tasks were constructed for this research. Task A consists of
six algorithms, whereas Task B consists of six applied problems. The contents
of the tasks were chosen in such a way, that Task B could be solved by
applying the same algorithms as in Task A, only using different numbers. In this
way, the students’ required domain-specific knowledge with respect to
procedures and computations were the same in both tasks, and therefore
comparisons between behaviors during the two tasks could be made more easily.
The Confidence and Doubt Questionnaire (CDQ) was developed for this
project (Boekaerts, Seegers, & Vermeer, 1995). This questionnaire is an
instrument for registering confidence during mathematical problem solving. In
order to investigate these processes on-line, a special notation system was
developed. In the left margin of every working paper on which a problem was
written, five faces were drawn ranging from very sad to very happy in their
expression. They symbolized the degree of doubt or confidence a student had
while working on the problem (see Figure 1). While working on the task,
students were asked to indicate to what extent they thought that their strategy
would lead to the right solution. The students were asked to put a mark under
one of the faces (1) after having read the problem (the orientation phase), (2) at
40-seconds intervals during the solution process (the execution phase), and (3)
after having found an answer (the verification phase). Marked faces were
translated to scores ranging from 1 (not confident ar all) to 5 (very confident).

Q ..
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Figure 1: Example of the Confidence and Doubt Questionnaire

Ooo train car can wransport 40 mailbegs.
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How many cars must be used?

warking-out
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Procedure of the individual sessions

Students were tested individually while they worked on the mathematics task.
The procedures for both sessions were the same. First, Task A was given to the
students in combination with the CDQ. After about three months, Task B was
administered to the students in combination with the CDQ. At the beginning of
every session, the students received detailed instruction about the procedure.
Students were instructed to write down their solution process and calculations ;
in as detailed a manner as possible. After they had understood the instmction,'\j
they completed two pretest problems. While doing the tasks, the students filled

out the CDQ while they worked on the problems. After having given a solution,

the students were told whether it was correct or not. If their answer was
incorrect, they were asked whether they wanted to try the problem again. After
having solved the problem for the second time, no feedback was given. If
students had given up, they were instructed to go on to the next problem.
Working time was recorded for each problem.

Variables .
We calculated a mean confidence score across the three phases of the solution
process for every student on every problem. Mean confidence ratings ranged

from 1 (not confident at all) to 5 (very confident).
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Students’ solutions were scored as either correct or incorrect. In addition,
solution strategies for each problem were listed, based on the students’ written
work and on notes that were made during the individual sessions. This resulted
in different lists of solution strategies for each problem. In order to compare
solution strategies across problems, they were further -categorized into three
general solution strategies: (1) ineffective, (2) conventional, and (3)
unconventional. First, a solution strategy was called ineffective, when students
either, (1) showed no attempt to solve the problem at all, or (2) used the wrong
computations or combination of computations, or (3) did not complete all the
necessary steps in order to solve the problem. Secondly, from the solution
strategies that were not ineffective, a solution strategy was called conventional
if one or more standard computational strategies were applied, such as the
execution of long division. Thirdly, a solution method was labeled
unconventional if it was mainly non-routine, for example primarily based on
students’ insight and/or logic, such as estimation or mental computation.

We dichitomisized the variable persistence into the categories high and
low, by taking into account the total number of incorrect solutions students had
on the whole task, and the number of times students decided to try to solve a
problem again. Students who retried less than half of the problems they had
solved incorrectly, were considered to be low in persistence, whereas students
who retried at least half of the problems they had solved incorrectly were
considered to be high in persistence.

Results

Consistent with expectations, boys performed better than girls on Task B. In
addition, there were more girls than boys who performed better on Task A than
on Task B, and there were more boys than girls who performed better on Task
B than on Task A. The data also revealed gender differences in the use of
solution strategies: Boys used more unconventional solution strategies than girls
for the problems in Task B. An unexpected finding was that girls were more
inclined to persist on Task B after failure experiences.

Intra-individual differences in students’ confidence while working on the
mathematics tasks were analysed across tasks using a multivariate analyses
design with repeated-measures. As was expected, boys perceived higher
confidence than girls while working on the problems of Task B. We found that
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only for girls, the mean confidence during Task B was lower than the mean
confidence during Task A.

In addition, we analysed to what extent there was correspondence between
students’ confidence and the (in)correctness of a solution. Figures 2 and 3
display the mean confidence scores on each problem of both tasks for four
categories of students: (1) boys with a correct solution, (2) boys with an
incorrect solution, (3) girls with a correct solution, and (4) girls with an
incorrect solution.

Figure 2:  Students’ mean confidence scores on the problems of Task A

Degree of confidence/doubt
5

. . . . .
1 : : T 1 t

4

1 2 3 4 5 6
—+— Correct boys —+ Incomect boys
- % Comect girls 9 Incomrect girls

Figure 3:  Students’ mean confidence scores on the problems of Task B

s Degree of confidence/doubt
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Regression analyses revealed that students with correct solutions for all problems
of both tasks displayed more confidence than students with incorrect solutions.
However, after accounting for the (in)correctness of the solution, a gender effect
on perceived confidence was found in relation to some problems. During two
of the problems of Task A, boys showed higher confidence when the solution
was incorrect than girls did, whereas during two of the problems of Task B boys
showed higher confidence than girls when the solution was correct. One of these
problems also elicited higher confidence in boys than in girls, when the solution
was incorrect. This pattern suggests that boys were inclined to be overconfident,
while girls were inclined to be underconfident.

Our last research question addressed relations between perceived con-
fidence, gender, and persistence following failure. Logistic regression analyses
were applied to the data with persistence (low versus high) as the dependent
variable. For Task A, we found positive relations for both boys and girls
between confidence and persistence. The gender effect appeared to be stronger
than the confidence effect with respect to Task B. Although boys’ perceived
confidence was higher than girls’, girls persisted longer than did boys.

Conclusions

The results of the present study demonstrate that both the cognitive and affective
variables measured during mathematics tasks revealed gender differences. These
differences in problem-solving behavior were also dependent on the contents of
the mathematics tasks. Consistent with our expectations, we found that girls
perceived lower confidence than boys, but only while working on the applied
problems. Intra-individual analyses revealed that girls not only rated their
confidence lower than boys during the applied problems, but also compared to
their own confidence ratings while solving algorithms. Our data suggest that
performance alone does not account for differences in confidence. We found that
boys were more inclined to be overconfident, whereas girls were more inclined
to be underconfident.

Relations between perceived confidence and persistence folloWing failure
were only partly confirmed in our study. Although we did find that girls
displayed lower confidence than boys during applied problem solving, this did
not result in lower persistence for girls.
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COMING TO KNOW PUPILS: A STUDY OF INFORMAL TEACHER
ASSESSMENT OF MATHEMATICS

Anne Watson
University of Oxford Department of Educational Studies
Abstract

The author visited a mathematics classroom regularly throughout a term, recording
the observable behaviour and written work of a small number of pupils. The teacher
was consulted frequently about her developing knowledge of the pupils as learners of
mathematics. Information obtained through the research was shared formally at two
points during the study, and informally. In this paper, the teacher's emerging picture
of a pupil is described and the relevant processes of informal assessment are analysed
and critiqued. The author finds that while behavioural information dominates the
observable data, it is other kinds of action that convey most about mathematics.

Introduction A

This paper describes part of an investigation into how, in their usual classroom
practice, teachers recognise and know what their pupils know and can do in
mathematics. The project addresses comments such as "problems stem from a system
which arranges for evaluation on behalf of others to be made" [Wheeler,1968], by
discovering more about the processes of evaluation, and "there appears to exist a great
need for a study of teacher judgements of pupils' mathematical potential" [Bishop and
Nickson,1983] by directly studying how those judgements are made.

It was prompted by moves towards incorporating teachers' judgements into statutory
assessment requirements in the UK from 1988 onwards, reinforced by Dearing [1994]:
"Ongoing teacher assessment is central to the assessment of the performance of the
individual child"(para3.38) and "Assessment is the judgement teachers make about a
child's attainment based on knowledge gained through techniques such as observation,
questioning, marking pieces of work and testing" (p.100)

In the early part of the project a description of the types of evidence teachers reported
using informally in practice was developed [Watson,1995]. The types were all
problematic in terms of meaning, interpretation and potential for bias and have
varying levels of acceptability as evidence, according to different audiences and
purposes of assessment. Defining evidence as the raw material used to make
Judgements, the following were found to be used, to a greater or lesser degree,
consciously or unconsciously, by teachers: oral evidence from teacher-pupil talk or
overheard pupil-pupil talk; written evidence, including tests, rough work, extended
writing, exercises; actions while workmg, particularly during practical work;
unprompted use of mathematics, occumng through any of the three modes above;
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knowledge of the pupil, leading the teacher to infer what has not been directly
observed; the teacher's own view of mathematics, which frames the work and
expectations of the class; behaviour, body language and facial expression. Oral
communication and unprompted use of mathematics were deemed to be the strongest
types of evidence. Written work was generally considered problematic as many
pupils have difficulty expressing their understanding on paper. Tests, particularly,
were thought to give an incomplete picture of knowledge.

Subsequent interviews gave detailed information about issues of fairness,
interpretation, analysis, understanding and teachers' attitudes, some of which has been
published elsewhere [Watson,ibid;1996a;1996b]. However, results were, largely
descriptive and did not offer any information about how evidence was moulded into
pictures by teachers. There is a dearth of literature describing how informal
judgements are made in mathematics. Literature on teacher expectations [Nash,1976]
describes how teachers can be influenced by what has been said already, and by whom
it was said, so that first impressions are founded on received impressions. Nisbett and
Ross [1980] describe how interpersonal judgements are made based on outstanding
external features in the early stages of knowing people and a reluctance to change
those views, even in the light of contradictory evidence. Symbolic interactionists
[Blumer,1978] suggest that we develop our views of others through interaction. This
places a burden on the participants to give observable, interpretable signs in
interactions [Goffman,1959]. In a classroom, the younger, less socially-skilled
participants have to communicate their thinking through interpretable signs to the
teacher.

In order to find out how views are formed we must know more about the signs of
pupils' knowledge which are available to be observed by teachers in classrooms.

The study

I observed a small number of pupils in each of two mathematics classrooms once a
week for the first term with a teacher. It was agreed that I should write down
everything I could observe and hear from the focus pupils and have access to written
work and other information about their mathematics. This way 1 would have the
same kinds of observable information as the teacher had, although I would have it in
short, intensive chunks rather than thinly spread over all lessons. 1 would not tape-
record or video pupils as this might alert them to the fact that they were the focus of
my work. I would share information with the teachers as soon as possible if it was
aberrant, immediately relevant, or in conflict with the teacher's current expressed
views; I would also give them copies of my notes at certain points during the term.

Q 4-271 14.C
ERIC )‘?é éw

Aruitoxt provided by Eic:



E

This way they would have access to all the information I had and hence be better able
to form well-founded views of the focus pupils!.

Bauersfeld [1988] warns against decomposing classroom events into pupils' actions and
teachers' actions, commenting that it can blind the researcher to the interactive joint
construction of classroom reality [p29]. However, [ shall illustrate that the outcomes
of a small part of the study suggest that more can be learnt about judgements arising in
the interactive classroom by such decomposition. [ shall describe some aspects of the
data relating to one pupil, G, in one of the classes. It was a mixed-ability year 6
middle school class (10 and11 year-olds). The teacher had talked to me of her beliefs
about mathematics and learning; briefly, that children learn better if they are doing
something practical, that communication is very important, that giving children the
chance to choose and explore is important in mathematics, that she has to ask them to
do too much writing because of the demands of inspectors, that children had different
strengths in different aspects of mathematics, different subjects and different learning
situations.

G2

A sample of the observations, with contextual comments

i) G put her hand up to answer questions about shapes. She is not chosen to answer.
(G put her hand up for nearly every question in all plenary sessions; when chosen to answer
she was usually correct.)

ii) She tries to attract my attention with irrelevant chat. (This happened several times
during the first few lessons.)

ili)  She draws a square as asked but it is the wrong size. She notices this, rubs it out and
says "this is so easy". (She frequently rubbed out spatial work many times; always with
noticeable energy. The decision to rub out always appeared to be her own.)

iv)  She says that she cannot make a triangle with three pieces she has been given, as
required, and makes a rectangle instead.

V) She volunteers to demonstrate angles by standing up and turning. She turns
immediately when words like "whole turn, half-turn" are used but hesitates for "right-angle" or
quantified angles, turning after others have called out instructions to her. (Volunteering to
"show" or "demonstrate” was a feature of the classroom and G always volunteered.)

RIC %50

I This latter decision allowed me to come to terms with ethical concerns about covert observation.

2The following comments are chronological, extremely abbreviated and merely indicative of the actual
data.
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vi)  She has her hand up for a long time before startingwork. (G frequently needed some
personal interaction before working from textbooks, and when making choices.)

vii)  She chooses to work outside the room, but returns for various reasons 11 times during
the lesson. )

viii)  She does not correctly carry out instructions which involve angle AND direction
simultaneously.

iX)  After rubbing out some of her own diagrams, G helps the girl next door measure some
angles, although her own work is about reflective symmetry. She goes from one to the other
afew times. The symmetry work is largely correct, with some errors in counting squares. (I
saw her make errors in physical counting several times during the term.)

X) She does some subtraction with decomposition. One of them she redoes as soon as
she has finished it. She tells the classroom assistant:-"because I took 1 off 7 and made it 8;
but it should go down". At the end of twelve examples she checks them on a calculator.
(There were other examples where she self-corrected her work, in both spatial and numerical
contexts.)

Sample evidence from written work

In her book her number work is correct, including subtraction with decomposition.
Rounding and estimating is correct. Work on sorting shapes is correct. Several pieces of
spatial and investigative work are unfinished. Work on arranging and ordering colours and
digits is unsystematic and incomplete. The symmetry work is not in her book. In a test on
shapes G has successfully identified most of the shapes with equal sides. She has answered
correctly several tricky questions about shapes with curved sides and no angles. She
identifies shapes with right angles when they are in usual orientations, but does not pick out
those in unusual positions. She correctly selects several shapes, including the hexagon,
which tessellate, but lists octagon as well. She has given no evidence of any symmetry (but
see ix). In another test G gives "10" as the answer to "Which is the odd one out:
2,4,6,8,11,12,147"3

Some teacher's comments about G

a) She is new to the school, although others joined it a year before, having been moved
there to avoid being bullied elsewhere. She is immature and very needy socially and
emotionally (see ii and vii). Based on a number test, has been put in the third of four groups
within the class.

b) On seeing my data, the teacher is surprised that G could keep two things in her head
(ix, but see vii also); she was surprised that G was even aware of what others are doing.

3This was marked as incorrect
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c) G had special language help at her previous school (vi).

d) When rank-ordering the focus pupils she places G lowest for each aspect of
mathematics apart from data-handling where others who are more untidy are placed below
her. :

e€) G is better at maths than at language- based work. .She has a short memory. She is
unfocussed and has a "muddling mind"

f) After seeing my data, particularly the evidence of self-checking (iii and ix), the teacher
revises her opinion of G "upwards" in the rank-ordering. G does not self-check in other
subjects, because they are all language-based so she has no mechanism for checking.

g) G has a desperate need to be accepted (i,ii and v). In number work she has some
understanding, but has a poor memory so cannot remember rules.

RIC

Analysis of the data

The excerpts above do little more than give a flavour of the whole of the data. 1
analysed the data by identifying incidents of the seven types of evidence mentioned
above in G's observable actions, and in the teacher's comments. Similar work by
Goldin and others [1993] depends on the researchers interpreting observed data as
being indicative of verbal, imagistic, notational systems etc., but these were generated
in clinical interview situations and classroom data did not yield easily to these
interpretations.

I had decided to include as behaviour only actions which might be interpreted to relate
to mathematics. For instance, "hands up" may mean the pupil knows the answer, but
might instead demonstrate only a naive understanding of the classroom culture;
repeated rubbing out of work may mean G knew it was wrong, but might instead
demonstrate a desire to take a long time over the work in order to avoid doing the
next task. I excluded apparently gratuitous social behaviour. Even so, behavioural
observations dominated the data. Apart from "rubbing out” the teacher and I had
similar evidence of behaviour, and the teacher was highly aware of the dominant
forms of G's behaviour: seeking reassurance and keenness to take part in whole class
sessions. All behaviour has to be interpreted.

As actions 1 included observable involvement in practical work, and other physxcal
actions, such as using rulers, moving forwards and backwards through work, looking
in several places for information etc. I also included movement from one task to the
next, such as choosing, which gives direct relevant evidence of doing maths. The
teacher had not been aware of all actions, or repetitions, or the effect actions might
have on G's work, or vice versa. I had much more detailed information than the

o
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teacher did for this aspect. For instance, G's habit of self-checking appeared through
my data.

As oral evidence I included public contributions to whole class discussion and
question-and-answer sessions and anything I overheard between the pupil and teacher
or between pupils which was about mathematics, the lesson, the teacher or maths
lessons in general. In Gs case she rarely talked to other pupils, and her teacher-pupil
interactions were usually about reassurance or understanding text. In this aspect I had
the same evidence as the teacher.

For written evidence I saw G's book, tests, and other artifacts. In this aspect I had the
same evidence as the teacher, although I often knew more about what had been
achieved but not written down.

All observable evidence was identifiable as one of these kinds.
Teacher's and researcher's responses to the study

When discussing the data the teacher talked of assessment as an organic process, not
resulting in definite judgements but giving a snapshot view of what a pupil can do.
However, her comments do not give a snapshot view; they show the creation of a
holistic picture of G as a learner of mathematics. Individual incidents of success and
failure were incorporated into her existing picture so that certain parts of the picture
intensify or fade. G was described as needy and weak at first. Although the teacher
moved slightly from that description, "need" still dominated the teacher's descriptions
at the end of the term. l

The separation of G's story from the rest of the data allowed me to see patterns within
her observable behaviour. T have a coherent record based on close observation for
several whole lessons, and looking at written work. The teacher has a coherent
record based on her knowledge of G's work within the whole of her school life,
relative to the teacher's pedagogic aims and the classroom culture. Although we
agree on the evidence, and much of my data confirmed the teacher's impressions, we
have constructed stories with different emphases.

My collation of action, oral and written evidence gives a picture of a pupil who can do
and describe several kinds of calculation, can imagine and describe some spatial and
positional properties better than she can draw or make them, can do everything
expected of her in textbooks so long as someone helps her interpret what is meant
first, works effectively in structured situations, has some difficulty with accuracy in
counting, and self-corrects automatically while working. But the teacher's

41 am accepting the teacher's interpretation of self-checking as a strength here. It is also possible that it
is a manifestation of low confidence or obsessive fear.
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judgements about her mathematical capabilities come, not from absolute data like
mine, but from comparisons which necessarily involve consideration of what a pupil
cannot do, as well as what they can.

By concentrating on a few pupils, rather than an overview of the interactive
classroom, I miss the ability to compare G's work to:

* what other teachers have said (G's reasons for coming to the school were supported
with records from elsewhere);

* how others adapt to the mathematics classroom culture (G could not choose,
explore, or do practical work well);

* expectations in the National Curriculum (G's observable successes are relatively
low in NC terms);

» teacher's expectations of the class (G did well at what she was clearly asked to-do);

» different outcomes from other pupils in similar learning situations (G was at her
weakest in situations which resulted in most differentiation; I had no access to the
whole class outcomes).

The teacher missed repeated learning actions, like self-checking, which indicate more
about mathematical processes and potential than answers alone can do. Actions which
show useful learning habits are not, in general, obvious in a busy classroom unless the
pupil has a way to bring them to the teacher's attention. G's way was to show her
book to the teacher and ask for frequent reassurance, which, in the context of already-
diagnosed emotional need, is easily seen as a manifestation of that need, rather than an
attempt to show what G has done, or inform the teacher about what she has thought.
G, by being socially inept, and adopting only a naive view of classroom culture (put
your hand up all the time) is spending energy on reinforcing negative judgements
rather than informing the teacher about her strengths. She is also unable to
demonstrate mathematical behaviour valued by the teacher: choosing, exploring,
practical work, use of unprompted mathematical knowledge, clear communication
about mathematics. In fact, the only evidence of mathematical learning which was
available to both of us was in written form, with its associated inadequacies. Other
mathematics-rich data; G's actions, were not available to the teacher.

Conclusion

Development of criteria for informal assessment [Grouws and Meier,1992] and
attention to documentation of unplanned observations [Clarke,1992] are important but
not in themselves enough to ensure teacher assessment is valid and reliable.

G's initial dominant features were emotional and social need. Subsequent behaviour,
even excluding non-maths-related behaviour, confirms this for the teacher, although
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other interpretations are possible. Careful observation revealed that G did give
signals orally, in writing and physically about her mathematical attainment and
learning habits, but not all of these would normally be available to the busy teacher.

Tentative analysis of data relating to other pupils gives similar results. This has
implications for the fairness of incorporating informal teacher assessment into
statutory assessment, and is especially worrying in view of the amount of training and
documentary material supporting teacher assessment which has been available in the
UK during the last eight years. '

Teachers' informal assessments, even with training, interest and good intentions, are
still liable to be biassed by a dominance of behaviour which can be interpreted to
confirm initial impressions.
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Supporting Elementary Teachers’ Exploration of Children’s Arithmetical Understanding: A
Case for CD-ROM Technology

Joy W. Whitenack, Nancy Knipping, Linda Coutts & Scott Standifer
University of Missouri-Columbia

This paper reports preliminary findings from a vear-long teacher enhancement project
conducted with 27 elementary teachers. The aim of the project was to support teachers’
reflection about the nature and quality of young children’s arithmetical thinking. A secondary
aim of the project was to explore the potential ways the teachers might use an interactive CD-
ROM package to analyze quicktime movie excerpts of children’s clinical interview sessions.
The findings reported suggest that the teachers’ understanding of children’s conceptual
development and the opportunities they had to explore children’s arithmetical activity via
interactive technologies contributed in part to the teachers’ ongoing professional development.

Introduction

This paper is a preliminary report of a year-long project conducted with 27 practicing
elementary teachers (grades K-3) of mathematics. The primary aim of this project was to provide
opportunities for the teachers to explore the nature and quality of young children’s arithmetical
thinking. A secondary aim of the project was to explore the ways CD-ROM technology might
potentially augment the teachers’ reflections about children’s arithmetical thinking. As part of the
project, during a one-week summer seminar, the project teachers viewed and analyzed various
quicktime movie excerpts of children’s interview sessions contained on the CD-ROM. In the
discussion that follows we report initial findings from our ongoing analysis of the data that was
collected during the summer institute when the CD-ROM package was implemented.

For many of the teachers, exploring children’s arithmetical thinking via interactive technology
was a novel experience. Further, many of the teachers had had minimal experiences analyzing
children’s solution methods. As such, exploring the CD-ROM package provided the teachers
opportunities to consider issues related to teaching and learning of mathematics in ways that they had
not previously experienced. In this paper, we elaborate the various issues that were raised by the
teachers as they reported their analysis during panel discussions at the close of the summer institute.
In so doing, we clarify the role interactive technology might play in supporting the teachers’ ongoing
professional development. To accomplish ti\is we first proviae background information about the
project. We then address the underlying theoretical positions that informed instructional design
decisions when developing the CD-ROM package. Finally, we report preliminary analysis of the
teachers’ reflections as they explored the CD-ROM package.

Background )

The project teachers participated in 4 mini-conference sessions, a one-week summer institute

and 8 three-hour class meetings, respectively. These three components comprised a university course

for which the teachers received graduate credit. The project team members co-taught the summer

The research reported in this paper was funded by the Coordinating Board of Higher Education under grant No.
C533590. The views expressed are those solely of the authors and do not reflect those of the funding institution.
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sessions and the 8 three-hour class sessions.

One of the primary aims of the summer institute was to provide opportunities for the teachers

to clarify the nature and quality of young children’s arithmetical thinking. As such, the project team

. led discussions and designed activities that allowed the teachers to consider various ways children
conceptualize number for quantities up to 20 and place value. To supplement these activities, the
teachers, working in pairs, explored the CD-ROM package to develop mini-case studies of one child
or several children. The teachers preserited their findings as a culminating experience during the final
day of the summer institute.

The CD-ROM package included movie excerpts of six elementary children solving various
problem situations adapted from interview tasks developed by Steffe & Cobb (1988) and Cobb
(1995). Of the six children included on the CD-ROM, two children were kindergartners (ages 5-6
years old), three children were first-graders (ages 6-7 years old), and one child was a third-grader (9
years old). Further, the movie excerpts depicted a wide range in the nature and quality of the
children’s current ways of knowing. For instance, one of the children had not yet constructed a
concept of number. Another first-grade child was extremely sophisticated and could mentally
manipulate two and three-digit numbers flexibility to solve a range of tasks.

Theoretical Considerations .

" With regard to instructional design, the goal was to develop a CD-ROM package so that the
quicktime movie excerpts were easily accessible and the interface itself was user-friendly. Further,
the developers hoped to provide the teachers opportunities to view the movie excerpts in many ways.
For instance, the teachers might explore several different children’s solutions for a particular type of
task, say addition of single-digit number sentences. This would require the teacher to first select a
particular child to view (see Figure 1) and then select various movie clips related to single-digit
addition (see Figure 2). By way of contrast, the teachers might choose to view excerpts of one
child’s solution methods across a variety of tasks. These are two of the numerous ways the teachers
could view and analyze the movie excerpts.

In addition, we anticipated that the teachers would use the information in various ways as they
considered the content contained on the CD-ROM. Whereas the content embedded was carefully
selected so that certain issues might arise, it was thought that the teachers would actively construct
knowledge based on their current understandings of the content as they explored the movie excerpts.
Following (Duffy & Jonassen, 1992), on the one hand we realized that the different ways the user
(teacher) might explore the software were constrained, in part, by the information embedded in the
software. That is, certain issues might emerge more readily for the teachers if certain examplés (e.g..
instances of children using counting methods to solve tasks) or related issues were included in the
CD-ROM package. Further, how the content was formatted, that is the actual interface, whether or
not the interface was openended, etc., would constrain how and in what ways the teachers could
explore the information. On the other hand, following a Neo-Piagetian position (Cobb, Yackel &
Wood, 1992; von Glasersfeld, 1995), the developers took the position that the teachers would
construct their own meanings as they explored the CD-ROM package. That is, as the teachers
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explored the information embedded in the CD-ROM package, they would construct and reflect on
issues that might later become objects for further reflection. In this sense, the CD-ROM environment
was constrained by the individuals’ current interests, experiences, and understandings of the content.
In sum, we postulated that there was an interdependence between the information embedded in the
CD-ROM package as it was designed by the developers and the actual ways in which the teachers
used the package. The apparent contradiction of imposing “structure” on how the teachers would
move through the CD-ROM environment was transcended by acknowledging that the various ways
they explored issues were constrained and enabled by their previous experiences. With regard to our
project goals, we hoped that the project teachers would access and consider information that was
specific and/or relevant to their own teaching practice. )
Methodological Issues

Data collected during the project included pre- and posttests, field notes of observations
conducted during each of the 17 sessions, the teachers’ portfolios (containing weekly reflections
during the course of the project, written assignments and other artifacts the teachers chose to include),
and videotapes of each of the sessions. Two cameras were used to videotape whole-class and small
group discussions of each session.' Videotape segments were then transcribed for further analysis.

Qualitative procédures that fit with the constant comparison method (Glaser & Strauss, 1967)
were used to analyze the transcriptions of the teachers’ presentations. The transcripts were coded to
identify issues that emerged during the presentations. From this process, more general categories
were identified. Using these generalized categodés. the researchers then developed working
hypotheses related to the teachers’ interpretations and the potential ways they used CD-ROM package
to clarify their interpretations. Each of these is summarized below.
Preliminary Findings

Interpreting Children’s Arithmetical Understanding. During the presentations, the teachers
provided psychological analyses to support claims about the children’s arithmetical thinking. These
claims varied from pair to pair and were both descriptive and analytical with regard to the quality of
the children’s arithmetical interpretations. Two of the prevailing constructs the teachers attempted to
tease out related to whether or not a child had developed a concept of number and/or some .
understanding of “tenness.” Further, many of the teachers were intrigued by one of the first-grade
children’s interview segments. This child randomly applied doubles strategies incorrectly to several
of the tasks that were posed during the interview session. As such, several of the teachers offered
conjectures about the child’s beliefs about what it meant to know and do mathematics. In addition,
the teachers speculated as to the kind of experiences this child encountered in her mathematics
classroom. In particular, some of the teachers gave social explanations for the difficulties that the
child experienced (e.g., the child attempted to comply with the norms for doing mathematics in her
classroom) during the interview session. In a crude sense, the teachers attempted to coordinate the
child’s individual interpretations with the social situation in which those interpretations evolved
during classroom instruction. In retrospect, from the project team'’s viewpoint, including this first-
grade child’s interview was critical and provided unforseen opportunities for the teachers to explore a
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range of issues related to establishing norms’ for knowing and doing mathematics.

As the teachers presented their findings, a second related issue emerged as to the viability of
their analyses. The teachers struggled with whether or not they had sufficient information to make
certain claims about the children. That is, they did not feel qualified to make inferences about the
children’s interpretations because they were not the child’s teacher and/or they did not have enough
background information about the child. These concemns were raised by several of the groups as they
presented their findings to the class. This issue had not been anticipated by the project team and yet,
as it surfaced, it was interesting how the different groups handled the conflicting goals of analyzing
the children’s arithmetical activity and remaining true to their own beliefs about what constituted
viable inferences.

At least three different means of handling this dichotomy surfaced as they teachers presented
their analyses. One of the groups stated that, initially, they did not “know how they would know
what [the children] were thinking.” They then explained that as they attempted to clarify the quality of
the children’s thinking, their conjectures became claims that they could make with a great deal of
confidence. By way of contrast, another pair of teachers did not develop the same confidence about
the claims they made. They explicitly stated that they struggled with making assumptions. “It was
uncomfortable.” They argued that they needed more information about the child to support the claims
that they made. At the same time, this pair was able to use the child’s interpretations across tasks to
adequately clarify the quality of the child’s concept of number. Further, in response to this pair’s
difficulty with making claims, another pair of teachers indicated that not knowing the child’s
background freed them to consider a range of possible reasons for the child’s interpretations.

These varied ways of dealing with the apparent contradictions the teachers encountered as they
analyzed the movie excerpts were quite informative. The teachers brought their beliefs and
experiences to bear as they generated hypotheses that were unique and distinctive for the purposes at
hand. Yet in many instances, they developed claims that were quite compatible with those offered by
their fellow classmates. Further, the clairﬁs they made fit with constructs found in the current
literature on children’s development of number.

As a further note, as the teachers presented their findings, the most poignant moment came
when one of the teachers recast this struggle anew at the close of the summer institute. It so happened
that the third-grade child interviewed was a student in one of the project teachers’ classrooms. This
teacher and her partner chose to analyze the third-grade child’s mathematical activity. Referring back

- to the analysis given by the teacher of the third-grade child and her partner, a teacher commented that
she was amazed that the analysis given by the child’s teacher who had the background information on
the child fit with the analysis she and her partners generated. The teacher then proceeded to salute the
project team to acknowledge her support of the project team’s decision to engage the teachers in
analyzing the children’s interview sessions. This instance further pointed to the significance of the
issues that the teachers addressed as they explored the CD-ROM package.

The Role of Technology. We were particularly interested in the ways the teachers would use
the CD-ROM package to analyze the children’s mathematical activity. We hoped that the teachers

t
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would have opportunities to revisit issues multiple times to clarify their own thinking as they
formulated conjectures about the children’s interpretations. Interestingly, when the teachers presented
their analyses, some of the teachers e)i,plicitly referred to the process that they went through to
develop claims about the children’s interpretations. This process inciuded developing conjectures and
counter conjectures to refine claims that they made. Further, this process was ongoing and resulted
from revisiting the movie excerpts several times over a four day period. For instance, one pair
explained that the initial conjectures that they made as they analyzed two kindergarten children’s
understanding of number changed during the course of the week. From the outset, they considered
the two children’s understanding of number to be similar. The day prior to presenting their findings,
they realized that the two children’s interpretations were quite different in both the nature and the
quality of their thinking. The teachers indicated, “As we got farther into looking at the both
[children], we saw that they were quite different, even though they may have answered the question
the same, the thinking behind it was so different...”

As a further point, the teachers continued to refine their conjectures during the presentations.
For instance, as a subsequent group of teachers were presenting their analysis to the class, one of the
teachers indicated that she changed her initial claims about a particular child’s interpretations as a
consequence of seeing one of the movie clips during the subsequent group’s presentation. We -

" suspect that this process.would continue if the teachers had other opportunities to explore the

CD-ROM package over ime.
Discussion

These findings have both pragmatic and theoretical implications for incorporating interactive
technologies to support teacher professional development. Pragmatically, with regard to instructional
design, the teachers could easily access the movie excerpts in several ways. This provided some
ﬂexibility in what the teachers decided to explore as they developed their mini-case studies. The
software also provided the teachers the opportunity to revisit the various clips to develop and refine
conjectures. This was a critical component that contributed, in part, to the quality of the teachers’
analyses. In addition to being able to randomly access the movie clips, we suggest that it was
absolutely crucial for the teachers to view excerpts of children engaged in arithmetical problem
solving in order to conceptuallze the potential ways the children could solve arithmetical problems.
Whereas the CD-ROM package afforded the teachers random access to children’s interview clips, as
the teachers explored the various clips, they had opportunities to conceptualize and possibly
reconceptualize their understanding what it means for children to know and do mathematics. As
such, developing legitimate activities for teachers to construct a deeper understanding of what it
means to know and do mathematics is not unlike developing curriculum materials for children.

Theoretically, these findings suggest there was a interdependence between how the teachers
used the interactive technology package and the teachers’ conceptions about teaching and learning.
On the one hand, as the teachers explored the CD-ROM they developed conjectures about the nature
and quality of the children’s current ways of knowing. The relationships that the teachiers made were
also the result of their previous experiences and understandifig/of whitmcahings children construct.
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In this sense, the claims the teachers made were the results of interpreting the contents against the
background of their own experiences. Engaging in this kind of activity thus provided the teachers
opportunities to conceptualize or reconceptualize their understanding of children’s arithmetical
development. For some of the teachers, these refinements were made possible as they continued to
visit and revisit the movie clips over and over. As such the teachers’ conceptualizations were
dependent on the ways they explored the CD-ROM. On the other hand, as a consequence of the
teachers’ understanding of children’s arithmetical thinking, they could explore the CD-ROM
differently to develop generalities about the children’s understanding. The teachers could access
excerpts to clarify the claims that they made. As such, the ways in which the CD-ROM could be
explored were dependent, in part, on the teachers’ current ways of knowing. More generally, how
the teachers explored the CD-ROM and the interactive technological environment constructed by the
teachers were interrelated; neither existed without the other.

The results reported here are preliminary and point to one of many ways technology might be
integrated in inservice teacher development. The researchers hope to further clarify these and
possibly other issues as they continue their ongoing analysis. Upon further analysis, attempts will be
made to triangulate these f] indings with the other data collected during the project. In so doing, the
researchers hope to determine the processes by which the teachers developed the claims that they
made about the children’s interpretations.
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Numbers versus letters in algebraic manipulation : which is more difficult?

Maggie P.H. Wong
The University of Hong Kong

ABSTRACT. The purpose of this paper is to describe some of the situations where students have
greater difficulty in applying the same procedural knowledge to manipulate similar algebraic
expressions involving numbers, and try to explain why there are such differences. Data were
collected through testing, follow-up interviews and case studies in an average standard secondary in
Hong Kong.

Introduction

Elementary algebra could be regarded as generalized arithmetic with the use of
letters to represent numbers its principal characteristic. Inadequate arithmetic
knowledge will lead to difficulty in learning algebra. On the other hand, the discontinuity
between arithmetic and algebra, such as the difference between the meaning of
concatenation, could be one of the major sources of difficulties (Kieran, 1990). Thus, in
discussing the difficulties in learning algebra, students’ knowledge of operations on
letters cannot be isolated from their knowledge of operations on numbers, and numbers
and letters might be perceived as mathematical objects in different but related reference
fields (Kaput, 1987).

Letters are more abstract entities than numbers. It was found in the CSMS study
that many children were not able to interpret letters as generalized numbers or variables,
and some students are unable to treat letters as numbers, but as some concrete objects
(Booth, 1988). Collis (1975) shows that in tests about operations, the nature of the
elements, namely small numbers, big numbers and letters, in an item can have a marked
effect on facility. It is found that younger children can only deal with items with small
numbers. Collis argues that the difficulties stem from the extent to which the elements
lack meaning for the child. :

Although letters are not used in arithmetic, numbers are very common in algebraic
expresstons, for instances, as the constant term, as the coefficients of the variables, or as
one of the data input elements. Sometimes the procedural knowledge involved is
different due to the presence of numbers versus letters. For instance, the brackets in the
following expressions are removed by different procedures :

a(b+c)=ab +ac; a(3+4)=a(7)=7a
But in some cases, the procedure ts identical, for instance :
ad=at =g 4 =4

If we accept the view that information is stored in our long-term memory in some
orderly way, it will be interesting to study how students’ knowledge about letters is
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connected with their knowledge about numbers. Hiebert and Carpenter (1991) have
proposed to use the metaphors of vertical hierarchies as well as a spider’s web for the
structure of internal networks of mathematical knowledge. Using these metaphors, we
can imagine that the connections among information about letters are at a higher level of
the vertical hierarchy of the internal networks of mathematical knowledge than those
about numbers. Successful learning of algebra involves building connection within as
well as across these two layers of networks.

In some educational systems such as that of Hong Kong, students learn to
transform algebraic expressions according to some standard procedures in early age'.
They may fail to do the transformation correctly when the familiar letters are replaced by
numbers. It is the assumption of this study that sometimes students have greater difficulty
in dealing with numbers than with letters in manipulating algebraic expressions.

The purpose of this paper is to describe some of the situations where students have
greater difficulty in applying the same procedural knowledge to manipulate similar
algebraic expressions involving numbers, and try to explain why there are such
differences. It is hoped that the data in this report will lead to better understanding of the
relationship between students’ knowledge of numbers and letters.

Methods of enquiry

The information of this report came from two sets of data®. The first is from the
testing and selected follow-up interviews of four classes of Hong Kong secondary school
students. The testis to examine whether students execute the same procedures in items
involving numbers and parallel items with letters instead. The items are restricted to the
multiplication items (e.g. a-a-a-ab-a) and the manipulation of exponents. The procedures
for manipulating these types of expressions are identical or similar, no matter there are
numbers or letters instead. The correct percentages are compared and the errors are
categorized. Why students executed different procedures for the parallel items are then
explored in the follow-up interviews. The second is two case studies based on clinical
interviews to observe how well the subjects apply the rules they learn in school to
manipulate algebraic expressions with different elements. The clinical interview
procedure allows the researcher to get in touch with the learner’s thinking processes in
doing mathematics.

' Hong Kong students start learning solving equations in Grade 4 and simplifying expressions in Grade
7.

* The two sets of data were collected by the writer for another study about students’ cognitive
obstacles in learning the laws of indices.  Part of the data are about students’ performance in
manipulating numbers versus letters and are reported here separately.
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Subjects and procedures

The study was conducted in an average standard secondary school in Hong Kong.
The 156 Secondary Four’ students were tested at the beginning of the academic year and
7 students were selected for follow-up interviews. Besides, 2 Secondary Three students,
Patrick and Fiona, were involved in the case studies. Each of them was interviewed
individually for six times. Four of the interviews were conducted at the period they were
learning how to manipulate exponents in school.

Results and analysis

In the set of test items that could be simplified by employing the rule a™ x a" =
a™" there are significant differences® in the item facilities, that is, correct percentages,
for the pairs of items :

Pairs of items for comparison
Exponents with numbers Bases with numbers
versus letters versus letters
Item Item facility Item Item facility
227 = 78.8% 2220 = 60.9%
2220 = 609% | m*m"= 79.5%
X -x = 94.9% 2.2 = 78.8%
mm = 795% | X% = 94.9%
534533 = 88.5% 53453 = 88.5%
2220 = 60.9% XX = . 94.9%

The students have poorer results when the exponents are letters in the parallel items. On
the other hand, they have better results when the bases are letters in the parallel items. It
is found from the error analysis that many students multiply the indices together in
expressions with algebraic exponents [for instance, 18% of them got m"- m® =m™] but
multiply the bases together in expressions when the bases are small numbers: [for
instance, 10% of them got 2°- 27 =4!%]. The following episode from one of the follow-up
interviews may help explain the results in these item :

* Secondary Four in Hong Kong is equivalent to Grade 10 in some countries.
* The differences are significant to 0.01 level, except for the last pair of items in the second column.
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[The student was asked to simplify 3* - 3 and he wrote 3*- 3 = 7]

I :Why?

Student; : 3 times 3 gives 9. x and y could not be multiplied together. y should

be added to x.

1 : Why couldn’t we multiply x and y?

S;: The book says so.

I : Do you mean this is what you had learnt from your textbook?

S3: Yes.

[He was then asked to simplify x° - x* and he wrote x° - x* = x°.]

I : Why?

S;: Both are x. They are equal and need not multiply. Then 3 plus 5 gives 8.

I : You say that both are equal and need not multiply. How about that one

[pointing at 3* - 3¥]? Why do you multiply them ?

S5 : [Silent for almost 10 seconds] .... 1 don't know.

I :Isit correct ?

Sy : No. It should be 3**.

I :Why?

S5 : Because the numbers need not be multiplied.

The above student knew the correct procedure for this type of problems. But he
executed a different procedure when the bases are small numbers. Another student
[student,] gave similar responses in the interview : 3%+ 3°=9*"*" and “53*.533=53"
He said that when he saw the symbols “3 - 3”, he wrote 9 almost automatically.

In the above pairs of items, the results are less consistent :

Items with Item facility Parallel items Item facility
letters only involving numbers
mnnmm= 90.4% yy8y= 94.9%
a-aaba= 74.4% k'kk-3k-k = 59.6%
X+ X" = 526% |4 +47= 21.1%

" It is difficult to explain the differences. It is found that some students got the
correct answer X" + X" = 2x" by the faulty procedure of adding x + x without adding the
bracket as they should have. It seems that the difficulty caused by the presence of
numbers depends on the context of the item.

In the case studies, there are also some interesting findings. After Patrick had
learnt the law (ab)" = a"b" in school, he was asked to simplify the following expressions
and he made very consistent mistakes : (2a™)" = 2a™," (2x°)* = 2x'%, (2%)* = 2x* and
(7k2)3 = 7K°. However, when it came to the question below, he answered correctly

without hesitation :
(hk)" =h" - k"

4 -288




* After that, he was able to do those previous questions correctly. He explained why he
made the mistake , (2x)* = 2x* : “I think that 2x is a number. So I do not use bracket. It
is just like 3 to the power four [He writes : (3)* = 3 ]”. 1t seems that the presence of
“pure letters” in (hk)" reminded him of the formula (ab)® = a®b® he learnt in school.

Another student Fiona made different- mistakes in related to the above formula.
She was able to transform (2x°)*, (2x)* and (my)?, but made the mistakes (3x) = 9x, (6x)°
= 36x, and (7t)’ = 49¢. Later it was found that she was able to simplify ax - bx and ma
"na but made the mistakes 3a - 3a = 9a and 4k - 3k = 12k. Since she interpreted
expressions in the form of (ab)* as “multiplying itself”, it was natural that she got (3x)°
[=3x-3x] = 9x. That is why she made mistakes only when the exponent is 2 as well as
when there is a number inside the bracket. Her mistake of 3a - 3a = 9a was probably
related to her interpretation of 3a as a+a+a and such interpretation is quite unlikely in
expressions such as ax - bx and ma - na.

Conclusion

Data in this report suggest that in some situations students are more likely to make
mistakes in expressions involving numbers due to different reasons.

When students are able to manipulate algebraic expressions with letters but not
with numbers, we may say that they fail to activate the appropriate information items in
their mind. Some cognitive scientists have pointed out the importance of the degree of
strength between the connections of information items in learning situations. They argue
that learning is not simply “adding nodes to the network™, but is also the adjustment of
link weights between the nodes so that “activity flows into the appropriate nodes at
appropriate times “ (Partridge and Paap, 1988, P.140).

In conclusion, whether algebraic expressions involving numbers are more difficult
depends on the types of expressions as well as the algebraic knowledge of individual
students. Although it is not yet possible to draw conclusions about the relationship
between students’ knowledge of numbers and letters, it is clear that the relationship is
too complicated to be described by any simple models.
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"YOU HAVE TO PROVE US WRONG": PROOF AT THE
" ELEMENTARY SCHOOL LEVEL

Vicki Zack
St. George's School and McGill University, Montreal, Quebec

In solving a variant of the 'chessboard’ task, a team of fifth grade elementary
students are convinced that their pattern works. They use what they know of the
pattern to refute an argument by peers. There is evidence of conjecture, refutation
and generalization, and aspects of proving. It is the teacher's contention that in order
for an argument to be considered a proof, the students néed not only convince, but
also to explain. Thus teacher involvement and personal inquiry are in this instance
necessary to provoke thought concerning why the pattern works as it does .

In my current research I am endeavoring to see how the learning of mathematics is
interactively accomplished within my fifth grade classroom. I consider what
individual children and the teacher contribute to this collective activity. In this paper
I will be concerned specifically with proof in this context. I will show how in work
with one task which was not at first assigned with any intention of attending to
proof, I found a number of the elements identified by Hanna (1995), namely
"assumption, conjecture, example, counterexample, refutation and generalization”
(1995, p. 48). I will focus on three of these aspects -- conjecture, refutation, and
generalization -- and show that aspects of proving arose spontaneously during the
activities.

There is little in the research literature on proving in relation to young children,
with the exception of the seminal work being done by the Maher team at Rutgers
(for example, Maher & Martino, 1996) and Lampert (eg., 1990), and preliminary
work by Jones (1994). Maher, and Lampert propose that involvement in inductive
and deductive reasoning which leads to the construction of proofs should begin at the
elementary school level. Gardiner suggests that "the 'form' and 'language' of the
reasoning changes as learners grow older, but not the requirement that mathematical
reasoning be: (a) general (that is, valid for all possible examples in the universe
under consideration), and (b) completely convincing" (1992, p. 4). Gardiner also
highlights the essential ingredient, that of the notion of infinity, saying: "To tame
infinity we need proof” (1992, p. 10). De Villiers has spoken of the "reasoning
which young children exhibit in situations which are real and meaningful to them"
(1991, p. 254, boldface in the original.). I take as my starting point the definition of
‘proof as a convincing argument' (Hanna, Balacheff, & Pimm, 1991, p. xxxiii). I
will show how the children at times exhibit careful reasoning, as they build their
arguments and attempt to convince. With reference to Mason's (1982) statement that
when you prove, first you convince yourself, then convince a friend, and then
convince an enemy, I will show instances within the children's interaction of
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‘convince yourself’, and ‘convince a friend' that you are correct. My goal as a
teacher is nurturing a higher level of agency and autonomy for learners, and the
ways in which the students ask their own questions, direct their own inquiry and
engage in sustained conversation about generalizations and proving is the prime
focus of the paper. The children were convinced that their pattern worked. It is my
contention that in.order for an argument to be considered a proof, the students have
to not only convince, but also to explain. I will indicate, briefly, ways in which my
involvement and personal inquiry were in this instance necessary to provoke thought
concerning why the pattern works as it does .

The school community and classroom setting, and assigned tasks

St. George's is a private, non-denominational school, with a middle class population
of mixed ethnic, religious, and linguistic backgrounds the population is pre-
dominantly English- speakmg The homeroom class size in the 1995-1996 year was
26; the work, however, is always done in half-groups (13 children in each group) of
heterogeneous ability. Problem-solving is at the core of the mathematics curriculum
in this classroom. The school and classroom learning site is a community of practice
which Richards (1991) has called inquiry math; it is one in which the children are
expected to publicly express their thinking, and engage in mathematical practice
characterized by conjecture, argument, and justification (Cobb, Wood, & Yackel,
1993, p. 98). Of interest here is the intersection between the last-mentioned items,
and proof.

Mathematics class periods are 45 minutes, and twice a week are extended to 90
minutes. In addition to the in-class problem-solving sessions, each week the children
also work on one challenging problem at home. They are expected to record their
work and reflect on their strategies in a Math Log which serves as the initial basis of
their group discussions in class. In class much of the session is conducted by the
children as they discuss the problem first with a partner, then in a group of four or
five, and finally with the entire group of thirteen students.

The children are videotaped throughout the school year on a rotating basis as they
work in their groups. In addition to the videotape records, data sources include
focused observations, student artifacts (math logs), teacher-composed: questlons
eliciting opinions (written responses), and retrospective .interviews.

. The mathematical context of the problem/discussion

"The COUNT THE SQUARES task is a-variant of the ‘Chessboard’ problem (see
Mason et al, 1982: Anderson, 1996). The work was assigned as follows:

Task #1 (April 29, 1996) :

Find all the squares .

Can you prove that you have found them all?
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After the conclusion of the discussion on Task #1 (discussion was held May 1), Task
#2 was given (May 1):
What if . . . this were a5 by 5 square? How many squares would you have?

The students wrote their explanation for their answer to Task #2 in their Math Logs
at home (as with Task #1), and then in class I asked them discuss their answers to the
5 by 5 grid, to think about and discuss the questions below, and to go as far in their
exploration as they were comfortable. The following extensions were posed:

What if this were a 10 by 10 square? How many squares would there be?

What if this were a 60 by 60 square? How many squares would there be?

I did not assign the tasks with a view to provoking discussion on proof. However,
the children's interaction in that 1995-1996 year, and the focus on proof at a number
of conferences (Canadian Math Ed Study Group, May 1996; PME 20 and ICME 8,
July 1996) aroused my interest in proof, which in turn led to this analysis.

Children's perceptions of the term 'prove'

The word 'proof has a wide range of meanings, from everyday usage to the idea of
formal rigorous mathematical proof. Amongst the children within the mathematics
classroom there are as well subtle and important differences in how they interpret
the term ‘prove’. You will note in Task #1 the request: 'Prove that you have
found all the squares.' In conversation with me about the ways in which the
children responded, Tommy Dreyfus suggested that there were two kinds of
assertions in the data (personal communication, Dec. 10, 1996). The first is in
regard to a single case; a number of students prove by checking that their answer for
the specific question is correct. For Task #1, the correct answer is 30 squares. Point
finale--no need for proof. Others are seen to refer to a pattern which has been
discerned and which a number of the students contend will continue forever. This
second kind of assertion is a general statement, and thus in principle requires proof.

'Convince yourself'

Will's pattern, his conjectures and his testing of them drove much of the work in his
" team of three and in the group of five. At the very outset, when the task was first

assigned, Will seemed to have an intuition of a pattern, as he is seen to look and
ponder and suddenly say: "I know what to do, I know exactly what to do"; he then
proceeds to write the ‘criss-cross’ pattern on the Math Log page (Figure 1). When
meeting with his partners two days later, Will says to Lew and to Ross, his partners
that day: "I was pretty sure there would be a pattern, so I was keeping my eyes open
and I found one." He then says he hasn't tested it on a different size square yet, but
“the chances are if it works for those it works for others." Lew, in response to
seeing Will's pattern on the page, is very impressed. Will checks out the answer for
the next size square (5x5), and finds that his conjecture is correct, and says: “So, it's
basically the same. I never realized it [i.e., the pattern] would be so helpful." Will
checks his work up to the 5x5, and then assumes that the pattern which has worked
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for up to 5 will continue to work in the same way; he is subsequently seen to act in
accordance with this assumption.

Sp.siae Mo of fhot siae
I 16 3<
4 9 s¢]
9 4 1<t
A ! I
Criss-cross differences
Figure 1: Will's two patterns

At one point in the first day's discussion, Will notices a 'pattern of differences'
(Figure 1), hence a second pattern. There were other approaches voiced by the
group members such as for example Gord's sum of squares, and Ross's sum of the
little squares.

It is important to emphasize that the ‘criss-cross’ pattern is one I rarely see; over the
past 3 years, only two children (of the 75 students) have discerned it, realized that it
might be significant, and then pursued it (Will, and Alan). Will's criss-cross pattern
is the one I assumed would be focal. It lends itself to the summing of the squares.
However, Will himself is seen to spend much time using the pattern of differences to
arrive at the numbers which will be the addends for the answer to the 60x60 task.
He is adding to get the next number, and adding to get the total. Will does not at that
point seem to be attending to the 'squares’ component. It is Gord who from time to
time refers to the squares. It is Gord and Lew who see that the solution for the 60 by
60 could be arrived at by multiplying (deriving the squares) and then adding: 60x60
+ 59x59 + 58x58 and so on. They declare with excitement: "We're a genius!" The
"we're a genius" speaks both to thrill of discovery and to their acknowledgement of
the fruitfulness of the collaborative endeavor.

'Convince a friend': An argument and three counter-arguments

In order to 'convince a friend’, Will, Lew and Gord proceed by saying, and
showing, that they have a pattern and that it works. They use what they know of the
pattern to refute the proposal presented by another pair, Ross and Ted. My caution
to the reader is that the summary which follows makes it all sound far too
straightforward; the unfolding of the argumentation, the challenges posed therein by
the 5 individuals, the discoveries and reconfirmations which occur during the 15-
minute interaction are not represented here.

We take up the May 3rd discussion at the point at which Will, Lew, and Gord (the
group of 3) meet with Ross and Ted (group of 2), and form the group of 5.
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Although their approaches to arriving at the answers have varied, the five peers have
up to this point all been in agreement with the answers for the tasks up to the 10
by10. The answer for the number of squares in a 4 by 4 is 30, in a 5 by 5 is 55, and
in a 10 by 10 is 385. It is during the discussion of the answer to the 60 by 60
question that there is a disagreement, and one group is challenged by the other to
refute: "You have to prove us wrong."

As they begin their group of five discussion they agree that the answer for the 10 by
10 is 385 squares. The group of three states that they-- Will, Lew and Gord -- had
not yet completed getting the answer for the 60 by 60. Ross and Ted feel that they
have the solution for the 60 by 60, which is to take the 385 (the answer for the 10
by 10 square) and multiply it by 6 to get the number of squares for a 60 by 60; the
resulting answer is 2310. [Of interest is to note that 10 of the 26 children in the
class used this strategy.] Will and Lew are very sure that Ross and Ted are wrong:

L:  T'll make you a bet.

W: I'll make you a bet.

L: I'll bet you anything in the world.

R:  I'm not betting. You have to prove us wrong.

Will and Lew and Gord then proceed to use three counter-arguments, all based upon
their generalizations, to refute what Ross and Ted have said. The first argument
(Will, Lew) is that 3600 (the result of multiplying 60 by 60) is already bigger than
2310. Lew adds: "And that's just the little squares." One needs only one counter-
example to disprove, but Ross and Ted are not seen at that point to concede. For the
second argument Lew and Will create a generalization. They propose that if what
Ross and Ted are saying is true, then it should work in general; and they then
proceed to give a counter-example. Lew and Will consider the answers for the 4 by
4, and then the 8 by 8 square. They use the information to show that the answer for
the 8 by 8 -- 204 squares-- is not simply double of the number of squares in the 4 by
4 -- 30 squares. The point they make is that just as one cannot multiply by 2 to get
the answer, one cannot multiply 385 by 6 to get the answer for a 60 by 60. The
third and last argument of the three arguments put forward is given by Will, and
supported by Gord; he points out that there is a pattern at work, and that doing a
move such as taking 385 and multiplying that number times 6 means that one is not
allowing the pattern to continue to grow, but that rather one is 'restarting’ the whole
pattern.

In their counter-arguments to Ross and Ted, Will and Lew (with Gord supporting
Will and Lew) are in the end successful in refuting, and in convincing. Ted is heard
to say: "Yeah, they're-, you guys are right, I go along with you guys." It occurs
after the second argument has been presented, but it is the idea of the 3600 (the first
argument) to which Ted directs his attention, and which he now assets is correct.
Ross does not voice his agreement explicitly, as did Ted, but is later seen to support
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Lew and Will when, in the larger group, Lew and Will work to refute another
team's presentation of the 385 times 6 strategy.

The findings seem to suggest that the students who succeed in convincing their peers
(Will, Lew and Gord, in this instance, and others) are those whose justifications are
based upon the generalizations. Will, Lew and Gord assert that the pattern must be
adhered to. Will insists that it will continue forever: "You can use the pattern to
calculate any number, even a googol times a googol.” What Will, Lew and Gord do
and say reflects their certainty that the pattern is correct in all cases. There is
evidence of conviction prior to proving; their arguments are based upon their
conviction that their pattern works in all instances. The pattern of summing the
squares, i. ., 12 + 22 +32 + .. isindeed correct. To be taken up next with the
children, then, is proving in the sense of explaining the-mathematical basis of the
generalizations.

The teacher's role in pushing to explain why it works

One element which was not pursued by the students was that of explaining why the
pattern works as it does. In investigating other patterns such an interest was present.
(as in Zack, 1995; Graves & Zack, 1996). The absence might in part be due to the
challenge inherent in this task. I myself was absorbed by the questions the task
evoked. In follow-up interview and presentation sessions conducted seven months
after the assignment was done, in December 1996, ten of the students re-immersed
themselves in the task. What I was able to do then was to suggest that questions of
why had to be addressed, and that I myself had many queries. I shared with them my
own questions and my own search for illumination (Note 1). Thus, I provided a
model of inquirer, of teacher as student (Freire). I built upon the elements which
they had discovered and introduced to me, and showed how it related to some of
what I had learned from other mathematics educators who had served as
intermediaries for me: Bill Nevin, Sept. 24, 1996, and David Reid, Oct. 13, 1996
(personal communications) and John Mason (1982, pp. 18-21). I presented
demonstrations of the explanations I had encountered, and also provided them with a
“non-obvious expression” which I had found in a work by Anderson (1996, p. 35). 1
told the children that I myself did not understand how Anderson had arrived at that
expression, nor why it worked. I did indicate to the children that there was a way. to
derive the formula, but that neither I nor they had the tools to do so. The discussion
which ensued allowed a preliminary investigation of the children's criteria for
proof. ’

All agreed that the pattern of summing the squares was intensely time-consuming.
During the May 3 class time, one child had spent much time with his partner seeking
a formula (Alan-with Keiichi), with no success. (Please note that in the past he had
had great success deriving algebraic expressions, as had others in the group as well).
When shown the Anderson formula, n(n+1)(2n + 1)/6, the ten students interviewed
felt that the Anderson formula would be useful, and economical. However, perhaps
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due to the emphasis in our classroom work that we have put upon explaining oneself,
in their emergent definitions of what they felt proof ought to be, the students
emphasized that their criteria for proof included: (a) a need for evidence, (b) that
the proof must make sense, and (c) that the person presenting must say why it works.
It was in written responses to the prompt "What do you think of Johnston
Anderson’s rule?" that the children expressed their positions. Ross, for example,
stated that Johnston Anderson's rule was "“brilliant, but he should explain why it
works." Lew commented: "I think that if the Johnston rule had evidence, if Johnston
himself explained why it worked it would be more convincing.” Rina felt that
Anderson’s expression was "a great way to figure out the problem but it doesn't
make sense . . . I think a mathematical proof is when you say why it works and if it
works for everything show why." Only one child, Sanjay, did not voice a need for
further elaboration, saying of the rule: "It's sort of like pi, it just works." Thus,
despite finding Anderson's formula expedient, the majority of the students stressed
that one ought to know why it worked as it did. In revisiting the problem, one of my
objectives was to make the students aware of the importance of seeking to explain the
mathematical structure. Hanna has asserted that in education proofs that explain
should be favoured over those that merely prove (1995, p.48); the children as well
are seen to seek proofs which explain.The criteria the children stated represent a
healthy 'habit of mind' in our push to have learners think meaningfully about proof.

Note 1: My questions were: Why does it go from 9 2by2's in the 4x4 to 16 2by2's in the 5x85, etc.?
Are there only 25 little squares added on when one moves from the 4x4 to the 5x57 Nevin showed
me that it was 25 squares of different sizes, while Reid showed me that one could consider that only
25 1by1 squares appear which have never been there before; all the rest are expansions. Mason (1982,
p-18-21) explained to me the derivation of the general formula 12 +22 +324 relating it to the
number of lines touched by the squares top to bottom, and side to side.

Acknowledgment: I am deeply indebted to colleagues who pursued various aspects with me: Barbara
Graves, Tommy Dreyfus, David Reid, and Bill Nevin. This research was supported by a Social
Sciences and Humanities Research Council grant from the Government of Canada #4 10-94-1627.
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CONSTRUCTING KNOWLEDCE BY CONSTRUCTING
EXAMPLES FOR MATHEMATICAL CONCEPTS '

Orit Hazzan and Rina Zazkis
Technion, Israel Institute of Technology

ABSTRACT

In this paper we discuss tasks in which students are asked to
give an example of a mathematical entity with certain
properties. We analyze students approaches and difficulties
when facing this kind of tasks. We suggest that problems of
constructing examples may help students in meaningful mental
construction of mathematical objects.
Consider the following tasks: ) ‘
(1) Give an example for a 6-digit number divisible (a) by 9, (b) by 17.
(2) Give an example for a function which value at x=3 is -2.
(3) Give an example for a sample space and an event that has a probability of 2/7 in that

sample space.

These tasks address different mathematical topics and require different knowledge

for solving them. Nevertheless, they have a lot in common.

*1. They all ask to provide an example of a mathematical entity. The required
example has to be a mathematical object (a-number, a function, an event) with certain
properties. The importance of addressing mathematical concepts through an examination
of their attributes is discussed in Hazzan (in press). One of the arguments for this approach
is that such a discussion invites treating mathematical notions as other objects in our life,

which have properties.

2. These tasks appear to be "inverses" of standard and more familiar tasks, because
usually learners are asked to determine divisibility of a given number, the value of a given
function at a given x or the probability of a given event. In this sense the usual roles of

what is "given" and what is "to be found" are reversed here.
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3. Usually there is no prelearned algorithms on how to create examples and the
solution for these tasks is not unique. The importance of students' exposure to and
encounters with problems that have many solutions has been discussed by Zaslavsky

(1996). .

These factors contradict some rooted beliefs about mathematical subject matter,
such as existence of the "correct way" and existence of the "correct solution" (Schoenfeld,
1985). We found that one of the interesting common features of these tasks is learners’
approaches when facing them. If the example is to be "given" by a learner, where from is it

to be "taken"? Learners' ways to provide examples are of our interest in this paper.

We start by presenting several "expert" approaches to the tasks above. Then we
discuss students’ approaches, obstacles they face and ways to overcome these obstacles.
We conclude with a discussion of a potential contribution of including "give an example”

tasks in students’ mathematical experiences.

EXPERT APPROACHES
(1) Give an example for a 6-digit number divisible by 9.
The first examples that come to mind are 900000 or 999999. In general,
considering the divisibility rule for 9, when 5 digits of a number are chosen at
random, the sixth one is determined. A "lazy" expert would avoid calculating the
total sum of the digits by choosing pairs or groups of digits with a sum of 9, like
362718, 450054 or 333009.
(2) Give an example for a function which value at x=3 is -2.
Probably f{x) = -2 is the most trivial example. Another possible way to generate
examples is to choose an arbitrary function and "adjust” it at by a constant to get a
value of -2 at x=3. Adjusting y=x, y=2x or y=x2 we get y=x-5, y=2x-8 and
y=x2-11 respectively. ]
(3) Give an example for a sample space and an event that has a probability of 2/7 in
that sample space.
Choosing a sample space with 7 possible outcomes, two of which are included in

the event provides a variety of examples satisfying the request.
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METHOD
The first task was administered as a part of interviews with 20 preservice
elementary school teachers. This was a part of a larger ongoing study on students’
learning introductory Number Theory (Zazkis and Campbell, 1996). The second task was
administered in a written questionnaire with a different group of 22 preservice elementary
school teachers. The third task was posed to a two groups of preservice elementary school

teachers during a classroom discussion.

In each task, students were asked to explain and articulate their strategy for
generating an example and to describe their ways of thinking while addressing the tasks. In
addition, after providing one example for the desired object, students were asked to
provide five more examples, or, alternatively, to describe a general strategy to be used if
they were asked to provide five more examples. Here is for example the full formulation of
task 2: )

a) Give an example for a function which passes through the point (2,13).

b) What is the value of the function y=2x+183 at x=1?

¢) Give an example for a function which value at x=3 is -2.

d) Explain how did you find the function in (c).

€) How will you guide a friend who encounters difficuities in the solution of the task?
f) If you were asked to give 5 additional examples to such functions (which are

described in (c), who would you do that?

STUDENTS’ APPROACHES
In what follows we will present strategies students used to provide examples. We
will not bring a summary of students successful or partly successful solutions, rather, we

will focus on common themes in their approaches.

Random trial and error: This strategy was a common one, at least in the
beginning, among participants working on task 1. Trial and error was observed on several
levels. There were students that picked numbers at random and checked with a calculator
their divisibility by 9. There were others that picked numbers at random and checked

whether the sum of their digits was divisible by 9. 1f we compare random trial and error
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with other approaches, it seems like all the following strategies require a construction of
an object. It is probably a more demanding cognitive task to construct an object than to
pick an object at random and check whether is satisfies a given property. The latter allows
one to reduce a new task to a familiar carrying out of a algorithm and to avoid any
decision making. This tendency is an example of "reducing abstraction level” (Hazzan,
1995).

Informed trial and error: This was a strategy that "bridged" a random trial and
error and a construction. For instance, if a randomly picked number N gave a reminder of
2 in division by 17, the next "trial" for a stuﬂent utilizing this strategy was N-2. This can
be seen as a mid-way between "finding" as searching in a dark and "constructing” a

mathematical object using the known properties.

Constructing an object: This approach presented a challenge of choice, because
for the tasks presented in our study a wide variety of objects could be considered as a
solution. It was our assumption that such a situation did not make the task harder.
However, the wide openness of tasks left many students wondering whether their
approach was "right" and the existence of a variety of solutions did not allow the
satisfaction of getting "the right one”. In the third task, for example, the students’ first
quiry was about the objects forming the sample space: Should they be numbers? Letters?
Different objects? Here we observed emotional or cognitive difficulty, not a mathematical
one, in making choices. It is related to the certainty that students are looking for and that
in mathematics they are used to have one path to the solution. (Carpenter, Lindquist,
Matthews and Silver, 1983). : .

Designing an algorithm: This was a common approach in generating examples.
When dealing with the second task, a majority of students used this approach. They found
a way to get a variety of objects using an algorithm which they created. As stated above,
in task 2 the students were asked to describe how they found the function, how they
would guide a friend who encounters difficulties in the solution of the task and finally, to

describe how they would find 5 additional examples for such functions.
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Elena wrote: The generation of the function which gets the value -2 at x=3 is carried
out in the following way: It is given that x=3 and y=-2. We will look for a function
for which if we plug in x=3 its value will be -2. We will write the formula of a line
y=ax+b. Two parameters are known from what is given. We will plug them in the
line formula: -2=a*3+b. As we said, a and b are not known to us [...]. We will
select some a (which determines the lines slope). In my example I chose a=2. Let's
plug it in the line''s formula, and now we will calculate the point in which the
Sfunction cuts the y axis. -2=2*3+b; b=-2-6=-8.
My functionis a=2 , b=-8 , y=2x-8.

This shows that students have a strong desire to follow an algorithm. When such
an algorithm is not given, they create it (Hazzan, in preparation). Tendency to stick to
known algorithms was observed also with task 1. While a 6-digit number divisible bi{ 9
was easily obtained by considering the sum of the digits, finding a number divisible by 17
provided a greater challenge. The reason for this discrepancy could be that for checking
divisibility by 9 students had a recently reviewed algorithm (process) which had to be
inverted. For checking divisibility by 17 there was no learned algorithm. Therefore the

algorithm had to be created first and then inverted.

Trivial examples: By this we call a'number like 170000 in question 1(b) and a
function like y=-2 in task 2. Although it was agreed in advance to honor trivial examples
but also to request additional ones, we were surprised by a relatively small number of
"trivial" examples that were given. Possible explanations to this phenomenon is that our
"trivial” examples are not "prototypes" of these objects: A function is expected to be an
expression involving a variable x; a 6-digit number is usually combined from a wider
variety of digits. Another possible reason for avoiding trivial examples is the students’

assumption that a teacher or an interviewer expects something different.

Validation: There was a strong tendency among students who have systematically
constructed their examples, rather than found them by trial and error, to check the

correctness of their answers. For example, students that "created” their divisible by 17
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numbers by choosing a multiplier and performing multiplication, wanted to verify (by

division) the correctness of their example as a solution.

Coping with degrees of freedom: This strategy presented a challenge that we
learned to appreciate. Interpreting t'ask 1 as a request for a sequence of digits whose sum
is divisible by 9, students still had a difficulty to choose the digits. Lucy explained her
strategy:

Lucy: ! need a sum to be something divisible by 9. So we can choose 18. OK, 8 and 2
give 10, and now 1 break the-8 into 4, 3 and 1. So 82431 should be divisible by 9.
Interviewer: Good, can you think of another strategy to find such a number?

Lucy: / could make the sum something else, like 27 or something...

We note here Lucy's resistance to think of a "number divisible by 9" without a
specific number in mind. This difficulty, however, is simply resolved by focusing on a

specific number, rather than on its property.

DISCUSSION
In this paper we discuss “give an example” tasks which are different from the
more standard tasks (which require an execution of a procedure) in several ways: First,
they inverse the traditional roles of "given” aﬁd "asked for"; Second, this kind of problem
invites an exploration of properties of mathematical notions; and Third, they have many, at

times infinitely many, solutions.

Inverting traditional tasks is a useful research technique and it was utilized by
several researchers. For example Ball (1990) asked students to give an example of a
problem situation that can be solved using a given division exercise. Furthermore, Simon
(1993) asked students to create a problem that can be sol\}ed by a division exercise
including a division by fraction. An appreciation of problems created by students and of an
activity of problem posing side by side to problem solving is becoming more and more
popular in mathematics education research literature (Brown & Walter, 1983). Here we
suggest to consider this kind of tasks not as research tools l;ut as an integral part of

learning.
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We feel that one of the most significant results of our study is the acknowledgment
of the relative difficulty of solving "give an example" tasks. Even though majority of
students came up with correct answers, we conclude the relative difficulty as a result of
the amount of time it took a student to respond in an interview, the lack of ease with
which additional examples were generated, the amount of calculations it took to produce
an example and finally, students' confidence in the examples they generated. Talking about
“relative” difficulty we mean relative in comparison to tasks which require the same
mathematical sophistication, but are "standard execution” tasks, rather than "construction”
tasks. In other words, checking divisibility of a number, calculating the value of a function
or the probability of an event, seemed to be easier than providing examples of or
constructing objects with given properties. In the next paragraphs we debate on what

could be perceived by a learner as difficult in solving a "construction” problem.

Usually, when we hear the term construction problems, the immediate association
is with a compass and a straight edge tasks in geometry, like construct a bisector ofa
given angle or inscribe an equilateral triangle in a circle. In our study students were asked
to create a mathematical object, which satisfied some properties. It turns out that such a
construction goes through a sequence of stages, where at some points there are several
ways to proceed. Thus, for example, in a more advanced context, while constructing an
isomorphism between two groups of order 6, students have the freedom to choose the
match between elements of the same order in the two groups (Leron, Hazzan & Zazkis,
1995). In this paper we showed that a similar phenomenon occurred in a more elementary
context. Students exhibit and acknowledge emotional difficulty to deal with degrees of
freedom. They feel uncertainty when put in a decision making situation, and sometimés
prefer to quit and avoid making choices when there is ﬁo one dictated way to proceed.
When facing this difficulty, we may draw students’ attention that in their lives they are-
making decisions, some easy some harder, all the time. Decision making in mathematics
should be practiced and not avoided. We believe that such a practice could influence
students' beliefs about mathematics, their habits, their search for certainty and their need
for feedback.
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Another activity that is practiced a lot outside of mathematical classrooms is a
discussion of properties of “things” and classification of objects accordiné to their
properties. We wish to bring this discussion into the mathematics classroom, by showing
the analogies between "regular” activities and mathematical activities. We believe that a
construction of a specific mathematical object described by its properties, may help
students in the mental construction of the relevant mathematical notions on an higher level
of abstraction. This is because in the process of constructing an object, students have to
deal with the concept through its properties, and not by carrying out several calculations,
which could be executed without an understanding of the essence of the concept under the
discussion. Therefore, we suggest that “give an example” tasks should be implemented at
different levels and with different mathematical contents. Several examples are below:

- Give an example of two linear (non-linear) functions which graphs intersect at (3,-1).
- Give an example of a continuos function that is not differentiable at x=4.

- Give an example of a sequence with a limit of 3.
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CHANGES THAT COMPUTER ALGEBRA SYSTEMS
BRING TO TEACHER PROFESSIONAL DEVELOPMENT

Nurit Zehavi
Weizmann Institute of Science, Israel

Abstract
Computer Algebra Systems (CAS), with their powerful combination of numeric
and symbolic computation, 2D & 3D graphic and programming facilities, are a
- natural and logical continuation of the scientific and graphical calculators that are -

becoming popular in school mathematics. Mathematics teachers have mathematical
backgrounds that enable them to understand what a CAS is doing and to appreciate
the facilities offered by this new technology. Most teachers, however, are not aware
of the existence of such software. Here we discuss the features of a professional
development course using a CAS as a technological tool in the mathematical
environment. From a test given in the course we present an example that became a
turning point for the teachers. Toward the end of the course the teachers developed
projects that we analyzed with regard to the goals of the course.

The idea of using computers to perform symbolic, rather than numerical
calculations led to the development of Computer Algebra Systems (CAS) in the
early sixties (Harper, Wooff & Hodgkinson, 1991). The availability of CAS for
microcomputers in the mid-eighties attracted mathematics educators to the
possibility of using them in the classroom. Recently there has been an increase in
research and development work regarding symbolic manipulators. Hillel (1993)
investigated CAS as a cognitive technology. He analyzed the strengths of CAS as a
learning tool and its opposition in instruction, and he concluded that because of its
extensive mathematical coverage a CAS can be used as a long-term mathematical
learning and solving tool. First attempts to set up a theoretical framework for using
CAS in education have emerged. Kutzler (1994) introduced the "scaffolding
didactics" model. According to his approach CAS can serve as scaffolding that
supports students in moving to a higher mathematical level. Kutzler's idea is based
on a didactical model for the use of computer algebra in mathematics €ducation,
called White-Box/Black-Box" and Black-Box/White-Box. The principle of this
model is that when students learn a new mathematical skill or concept, they should
first do the operation "by hand"; only after mastering it somewhat the Black-Box is
issued to perform the operations. In another learning situation the sequence can be
reversed — CAS are used to generate examples for exploration (the Black-Box
phase), leading to concept formation in the White-Box phase. Drijvers (1995)
investigated several educational examples regarding this model. He pointed out the
advantages and limitations of the model; its main difficulty is that it fails to deal
with the role of CAS in open-ended investigations for which a CAS is very useful.
Drijvers recommended searching for an appropriate model for different examples
by applying and adjusting general didactic theories, or by using specific theories on
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the didactic use of technology. David Tall (1993, 1996) developed a theory of using
a computer environment for learning mathematics. One of his ideas, "the principle
of selective construction”, refers to the flexibility of the learner in focusing on one
aspect of cognitive learning while the computer carries out the others. Educators
must provide appropriate activities to enable students to focus on selected
mathematical concepts and processes. An application of this principle in teaching
the limit concept with CAS was discussed by Monaghan, Sun and Tall (1994).

Although it is generally acknowledged that teaching with computers should be
adapted to individual preferences of students in procéssing information (Corno &
Snow, 1986; Ford & Ford, 1992), little is known about individual differences in the
professional development of teachers. Bottino and Furinghetti (1994) examined
teachers' views on the role of computers in mathematics teaching and found that
they were mainly a projection of their own views on mathematics teaching.
Computer Algebra Systems have presented a great challenge to mathematics
teaching today. Thus it is important to adequately prepare teachers for the future in
this age of technology.

A professional development course

Many of the mathematics teachers active today previously had solved problems by
pencil and paper. The technological tool available then was a book of logarithm
tables, and later on the slide rule. The scientific calculator was a big step forward
technology-wise, and the graphic calculator even more so. CAS technology,
however, with its power in symbolic computation is significant in changing the
traditional mathematical environment. Freed from performing manual techniques,
the problem solver can now focus on mathematical meaning, methods and
explanations. By combining various representations of mathematical problems,
teachers can invent new ones. In considering the future needs of teacher
preparation and involvement, we designed and implemented a 90-hour professional
development course with the following goals:

— By making use of the new possibilities offered by CAS teachers will be provided
with opportunities to refresh and extend their mathematical knowledge.

— The teachers themselves will experience learning with this new technology as a
motivation to acquire further knowledge, to experiment and integrate CAS in
their teaching.

— CAS will become a familiar and integral part of the mathematical environment of
the teachers.

To achieve these goals we identified four characteristics of the course:

(1) Choice of mathematical topics

The software can be used in those problem-solving situations that address important
mathematical ideas. The solutions obtained using CAS have pedagogical benefits
and demonstrate the advantages of using the software.
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(2)Introducing the various components of CAS

The problems are presented in a sequence that gradually introduces the system
components. We start with the infinity of prime numbers problem using CAS's
powerful numerical capacity, we add and combine symbolic and graphical
representations, and conclude by programming utility files for computing circular
functions (e.g., computation of x) that also combine a visual animation of the
iteration process (Mann & Zehavi, 1996).

(3) The technological aspects of CAS

In any integration of software it is important to acquire basic skills in its
technological aspects. Derive (Soft Warehouse, 1990) is a menu-driven computer
algebra system that is extremely easy to use. We found it ideal for use in the
teacher course. Another issue that also needs to be addressed is that when teachers
are first exposed to CAS they usually like its "magic”, and then some react, "but it
just solves without explaining the way" or "how does computer algebra work?"
Teachers should be aware that a computer algebra system solves problems in a
different way than they ordinarily would. They should benefit from learning about
the system to obtain some theoretical understanding of its symbolic computation,
data structures and algorithms. This knowledge will help them, for example, to
answer a curious student with programming experience who wonders how the
software represents and manipulates very long numbers.

(4) Implication for the classroom

In order to attract teachers to use this new technology they must be involved in
developing CAS teaching methods. Such involvement includes learning about
cognitive technologies, discussing current experiments, and creating problems for
students (Zehavi, 1996).

A test problem

The first three chapters in the course include examples from number theory, a wide
range of symbolic manipulations and the advantages of the graphical representation.
“In the test that was given to the teachers at this stage we used a problem taken from
Alan Schoenfeld's mathematical problem-solving class, cited by Arcavi (1994).

"Explore the relationships between the values of 'a' and
the number of solutions of the pair of equations:
x2 - y2 =0
(x-a)2 + y2 =1"
" The problem is stated in algebraic terms. Thus the teachers used Derive to perform
the laborious algebraic manipulation. The solution obtained, x = 0.5(a \/(2 - a2)),

led to the interpretation that "any solution of x represents two points in the plane”,
ignoring when x = 0, which occurs for a = 1. Some teachers also tried to add
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conviction by changing the representation to graphics. Derive enables implicit
plotting of equations. Figure 1 shows the graph of the first equation, which is
represented as two lines, y = %x, and several circles whose centers lie on the x-
axis for specific values of 'a’. When a = 1 there are three rather than four
intersection points. After observing this some teachers performed a multi-
representation analysis of the problem and gave the correct answer of 0, 2, 3, or 4
solutions.

L
2
J(2-a)+a
#?: x = —m—m—m8m8M8—
2
2
a-d@ -a)
#8. x = —4m8
2 \
2 2
L -y =0
2 2
#10: (x -0) +y =1
2 2
#11: (x - 1) +y =1
2 2
#12: (x -d2) +y =1
2 2
#13: (x - -2.5) +y =1

Figure 1: Symbolic and graphical solutions

The distribution of the teachers' responses (n = 25), presented in the table, reveals
their solution strategies:

Method Correct solution Wrong solution
symbolic ' 4 - 7
symbolic and graphic 10 1
graphic and symbolic 1 2

The following anecdote describes a change of attitudes. After the test, one of the
participants, a quite experienced high-school teacher, compared notes with another
teacher. She would not agree about the case of three solutions. He suggested
plotting. She said, "I am pragmatic, the graph does not add information, it just -
illustrates what we know. I like solving the algebra with Derive and that should be
enough." He explained how the implicit plotting, when a = 1, helped him to
complete the answer and to understand the algebraic explanation. When she found
her mistake she became enthusiastic and changed her approach, "I must educate
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myself to use the graph more seriously, especially when implicit plotting is
available." Here the step forward of implicit plotting integrated with the symbolic
mechanism of the software enhanced the users' cognitive mathematical integration.

A problem created by a teacher

Toward the end of the course the teachers were challenged to create problems that
revealed pedagogical advantages of the software. We present here a problem,
designed by a teacher, which combines analytic geometry with a minima problem:

“Given the lines x =-2andy =3
find a line y = mx to complete a right angle triangle
(a) with a minimal length of the hypotenuse,
(b) with a minimal area."

The teacher was very familiar with the commands and options of the algebraic and
graphical windows. She used the vector notation to denote the vertices of the:
triangle, A:= [-2, -2m] and B:= [3/m, 3] (see Figure 2). When she tackled the
problem she discovered that she did not have to explicitly display the length AB as
a function of m to indicate that she was interested in the derivative. She liked the
idea that when she issued the commands "Calculus Differentiate” for expression #4
the program showed that the derivation was for m, and she explained the possible
advantage of this feature for conceptual understanding of calculus. Furthermore, -
when she issued the command "soLve #5 to zero" (see annotation at the bottom of
Figure 2) she got the value of m for the minimal length of AB. The teacher
emphasized this cognitive technology of.a black-box with some peeping holes. She
discussed with the other teachers its potential use in class where students would
have to interpret the steps shown. The technology enables an innovative pedagogical
approach in which the student can focus on key concepts regarding the variable of
the differentiation without bothering with the complicated expressions of the
function and of its derivative. This is not the ‘only approach; it is the problem
solvers' responsibility to select the direction they want to pursue.

The teacher repeated the procedure for area S of the triangle. The surprising aspect
of the problem is that the minimal area is nor obtained for the minimal length of
AB. This is nicely illustrated by the graph in the picture that the teacher prepared
using the option of "tracing" a graph (see Figure 3). On the left-hand side are
shown the symbolic function AB(m) and its graph. The minima, AB = 7.02, was
obtained for m = 1.11471 (in decimal approximation). On the right-hand side two
minima were obtained for m = 1.5 and for m = -1.5. In the positive case the area is
minimal, but AB = 7.21. The teacher began, at this stage, to look closer at the
format of the symbolic expressions obtained for AB and S. Relating their structures
to their graphs leads to asking additional questions regarding the initial geometrical
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problem. For example, what happens for negative values of m? Where m =-1.5 it
is clear — there is no triangle and the values of AB and S are both equal to zero.
Then another teacher raised the question whether there is another case where the
numerical values of AB and S are the same. The teachers selected and combined
various representations, symbolic, graphical, and geometrical to answer this-
question. The most popular way was to formally solve the equation AB = S, which
yields m = -5/12, and then to interpret this result by drawing the triangle (as in
Figure 2), and later to look for the intersection points of the two graphs that appear
in Figure 3.

The teachers suggested further ideas for teaching as well as technology tips.
Clearly, CAS support different approaches of coping with mathematical problems.
An added value of the coursework was that teachers became aware of the variety of
possible ways of carrying out a learning activity.

Conclusion

By inventing and solving problems using a CAS, teachers became more familiar
with the software. The problems that teachers invented reflect a variety of
backgrounds, views and teaching styles. In a feedback questionnaire most of the
teachers in the course indicated that the teaching method used provided them with
greater understanding and insight regarding how to use Derive, as well as refreshed
their mathematical knowledge. Half of the teachers, however, did not agree that the
course extended their mathematical knowledge explaining that they could not
understand all the problems. These findings indicate the importance of teachers
doing and learning mathematics themselves with the software, as an essential part of
their professional development. When teachers were asked about their readiness to
meet the challenge of incorporating Derive in their teaching, their first reaction
was.that it would require a fair amount of preparation time. Nevertheless, they
suggested identifying segments of the problems they felt comfortable with, and
adapting them for use with students, implementing "the principle of selective
construction”. They all expressed their desire to participate in a follow-up course
for designing curricular materials. Even if, today, there are no clear answers to the
major research questions on integrating CAS in teaching, teachers should be
motivated to learn and to be involved in developing teaching methods for this new
technological age.
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